

 Navigation

 	
 index

 	
 next |

 	yaql documentation

Welcome to yaql documentation!

	YAQL: Yet Another Query Language
	Quickstart

	Project Resources

	License

	What is YAQL

	Why YAQL?

	Getting started with YAQL
	Introduction to YAQL

	Installation

	HowTo: Use YAQL in Python

	YAQL grammar

	Basic YAQL query operations

	Usage
	Embedding YAQL

	REPL utility

	Language reference
	Terminology

	Literals

	Keywords

	Variable access

	Function calls

	Operators

	List expressions

	Map expressions

	Index expressions

	Delegate expressions

	Customizing and extending yaql
	Configuring yaql parser
	Customizing operators

	Execution options

	Other engine customizations

	Working with contexts

	Naming conventions

	Extending yaql
	Extending yaql with new functions

	Specifying function parameter types

	Lazy evaluated function parameters

	Auto-injected function parameters

	Automatic parameters

	Function resolution rules

	Function development hints

	Standard YAQL Library
	Comparison operators

	Boolean logic functions

	Working with collections

	Querying data

	Branching functions

	String manipulations

	Math functions

	Regex functions

	DateTime functions

	Intrinsic functions

	YAQL`ization of Python classes

	Legacy YAQL compatibility functions

	Contributing

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

YAQL: Yet Another Query Language

YAQL (Yet Another Query Language) is an embeddable and extensible query
language, that allows performing complex queries against arbitrary objects. It
has a vast and comprehensive standard library of frequently used querying
functions and can be extend even further with user-specified functions. YAQL is
written in python and is distributed via PyPI.

Quickstart

Install the latest version of yaql:

pip install yaql>=1.0.0

Run yaql REPL:

yaql

Load a json file:

yaql> @load my_file.json

Check it loaded to current context, i.e. $:

yaql> $

Run some queries:

yaql> $.customers
...
yaql> $.customers.orders
...
yaql> $.customers.where($.age > 18)
...
yaql> $.customers.groupBy($.sex)
...
yaql> $.customers.where($.orders.len() >= 1 or name = "John")

Project Resources

	Official Documentation [http://yaql.readthedocs.org]

	Project status, bugs, and blueprints are tracked on
Launchpad [https://launchpad.net/yaql]

License

Apache License Version 2.0 http://www.apache.org/licenses/LICENSE-2.0

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

What is YAQL

YAQL is a general purpose query language, that is designed to operate on
objects of arbitrary complexity.
YAQL has a large standard library of functions for filtering, grouping and
aggregation of data. At the same time YAQL allows you to extend it by
defining your own functions.

Why YAQL?

So why bother and create another solution for a task, that has been addressed
by many before us? Obviously because we were not satisfied with flexibility
and/or quality of any existing solution. Most notably we needed a tool for json
data, that would support some complex data transformations.
YAQL is a pure-python library and therefore is easily embeddable in any python
application.
YAQL is designed to be human-readable and has a SQL-like feel and look. It is
inspired in part by LINQ for .NET.
Since YAQL is extensible and embeddable it makes a perfect choice for becoming
the basis for your DSLs.

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

Getting started with YAQL

Introduction to YAQL

YAQL (Yet Another Query Language) is an embeddable and extensible query
language that allows performing complex queries against arbitrary data structures.
Embeddable means that you can easily integrate a YAQL query processor in your code. Queries come
from your DSLs (domain specific language), user input, JSON, and so on. YAQL has a
vast and comprehensive standard library of functions that can be used to query data of any complexity.
Also, YAQL can be extended even further with user-specified functions.
YAQL is written in Python and is distributed through PyPI.

YAQL was inspired by Microsoft LINQ for Objects and its first aim is to execute expressions
on the data in memory. A YAQL expression has the same role as an SQL query to databases:
search and operate the data. In general, any SQL query can be transformed to a YAQL expression,
but YAQL can also be used for computational statements. For example, 2 + 3*4 is a valid
YAQL expression.

Moreover, in YAQL, the following operations are supported out of the box:

	Complex data queries

	Creation and transformation of lists, dicts, and arrays

	String operations

	Basic math operations

	Conditional expression

	Date and time operations (will be supported in yaql 1.1)

An interesting thing in YAQL is that everything is a function and any function can
be customized or overridden. This is true even for built-in functions.
YAQL cannot call any function that was not explicitly registered to be accessible
by YAQL. The same is true for operators.

YAQL can be used in two different ways: as an independent CLI tool, and as a
Python module.

Installation

You can install YAQL in two different ways:

	Using PyPi:

pip install yaql

	Using your system package manager (for example Ubuntu):

sudo apt-get install python-yaql

HowTo: Use YAQL in Python

You can operate with YAQL from Python in three easy steps:

	Create a YAQL engine

	Parse a YAQL expression

	Execute the parsed expression

Note

The engine should be created once for a set of operators and parser rules. It can
be reused for all queries.

Here is an example how it can be done with the YAML file which looks like:

customers_city:
 - city: New York
 customer_id: 1
 - city: Saint Louis
 customer_id: 2
 - city: Mountain View
 customer_id: 3
customers:
 - customer_id: 1
 name: John
 orders:
 - order_id: 1
 item: Guitar
 quantity: 1
 - customer_id: 2
 name: Paul
 orders:
 - order_id: 2
 item: Banjo
 quantity: 2
 - order_id: 3
 item: Piano
 quantity: 1
 - customer_id: 3
 name: Diana
 orders:
 - order_id: 4
 item: Drums
 quantity: 1

import yaql
import yaml

data_source = yaml.load(open('shop.yaml', 'r'))

engine = yaql.factory.YaqlFactory().create()

expression = engine(
 '$.customers.orders.selectMany($.where($.order_id = 4))')

order = expression.evaluate(data=data_source)

Content of the order will be the following:

[{u'item': u'Drums', u'order_id': 4, u'quantity': 1}]

YAQL grammar

YAQL has a very simple grammar:

	Three keywords as in JSON: true, false, null

	Numbers, such as 12 and 34.5

	Strings: ‘foo’ and “bar”

	Access to the data: $variable, $

	Binary and unary operators: 2 + 2, -1, 1 != 2, $list[1]

Data access

Although YAQL expressions may be self-sufficient, the most important value of YAQL
is its ability to operate on user-passed data. Such data is placed into variables
which are accessible in a YAQL expression as $<variable_name>. The variable_name
can contain numbers, English alphabetic characters, and underscore symbols. The variable_name
can be empty, in this case you will use $. Variables can be set prior to executing
a YAQL expression or can be changed during the execution of some functions.

According to the convention in YAQL, function parameters, including input data,
are stored in variables like $1, $2, and so on. The $ stands for $1.
For most cases, all function parameters are passed in one piece and can be accessed
using $, that is why this variable is the most used one in YAQL expressions.
Besides, some functions are expected to get a YAQL expression as one of the
parameters (for example, a predicate for collection sorting). In this case,
passed expression is granted access to the data by $.

Strings

In YAQL, strings can be enclosed in “ and ‘. Both types are absolutely equal and
support all standard escape symbols including unicode code-points. In YAQL, both types
of quotes are useful when you need to include one type of quotes into the
other. In addition, ` is used to create a string where only one escape symbol ` is possible.
This is especially suitable for regexp expressions.

If a string does not start with a digit or __ and contains only digits, _, and English letters,
it is called identifier and can be used without quotes at all. An identifier can be used
as a name for function, parameter or property in $obj.property case.

Functions

A function call has syntax of functionName(functionParameters). Brackets are necessary
even if there are no parameters. In YAQL, there are two types of parameters:

	
	Positional parameters

	foo(1, 2, someValue)

	
	Named parameters

	foo(paramName1 => value1, paramName2 => 123)

Also, a function can be called using both positional and named parameters: foo(1, false, param => null).
In this case, named arguments must be written after positional arguments. In
name => value, name must be a valid identifier and must match the name of
parameter in function definition. Usually, arguments can be passed in both ways,
but named-only parameters are supported in YAQL since Python 3 supports them.

Parameters can have default values. Named parameters is a good way to pass only needed
parameters and skip arguments which can be use default values, also you can simply
skip parameters in function call: foo(1,,3).

In YAQL, there are three types of functions:

	Regular functions: max(1,2)

	
	Method-like functions, which are called by specifying an object for which the

	function is called, followed by a dot and a function call: stringValue.toUpper()

	Extension methods, which can be called both ways: len(string), string.len()

YAQL standard library contains hundreds of functions which belong to one of these types.
Moreover, applications can add new functions and override functions from the standard library.

Operators

YAQL supports the following types of operators out of the box:

	Arithmetic: +. -, *, /, mod

	Logical: =, !=, >=, <=, and, or, not

	Regexp operations: =~, !~

	Method call, call to the attribute: ., ?.

	Context pass: ->

	Indexing: []

	Membership test operations: in

Data structures

YAQL supports these types out of the box:

	Scalars

YAQL supports such types as string, int. boolean. Datetime and timespan
will be available after yaql 1.1 release.

	Lists

List creation: [1, 2, value, true]
Alternative syntax: list(1, 2, value, true)
List elemenets can be accesessed by index: $list[0]

	Dictionaries

Dict creation: {key1 => value1, true => 1, 0 => false}
Alternative syntax: dict(key1 => value1, true => 1, 0 => false)
Dictionaries can be indexed by keys: $dict[key]. Exception will be raised
if the key is missing in the dictionary. Also, you can specify value which will
be returned if the key is not in the dictionary: dict.get(key, default).

Note

During iteration through the dictionary, key can be called like: $.key

	(Optional) Sets

Set creation: set(1, 2, value, true)

Note

YAQL is designed to keep input data unchanged. All the functions that
look as if they change data, actually return an updated copy and keep the original
data unchanged. This is one reason why YAQL is thread-safe.

Basic YAQL query operations

It is obvious that we can compare YAQL with SQL as they both are designed to solve
similar tasks. Here we will take a look at the YAQL functions which have a direct
equivalent with SQL.

We will use YAML from HowTo: use YAQL in Python as a data source in our examples.

Filtering

Note

Analog is SQL WHERE

The most common query to the data sets is filtering. This is a type of
query which will return only elements for which the filtering query is true. In YAQL,
we use where to apply filtering queries.

yaql> $.customers.where($.name = John)

- customer_id: 1
 name: John
 orders:
 - order_id: 1
 item: Guitar
 quantity: 1

Ordering

Note

Analog is SQL ORDER BY

It may be required to sort the data returned by some YAQL query. The orderBy clause will cause
the elements in the returned sequence to be sorted according to the default comparer
for the type being sorted. For example, the following query can be extended to sort
the results based on the profession property.

yaql> $.customers.orderBy($.name)

- customer_id: 3
 name: Diana
 orders:
 - order_id: 4
 item: Drums
 quantity: 1
- customer_id: 1
 name: John
 orders:
 - order_id: 1
 item: Guitar
 quantity: 1
- customer_id: 2
 name: Paul
 orders:
 - order_id: 2
 item: Banjo
 quantity: 2
 - order_id: 3
 item: Piano
 quantity: 1

Grouping

Note

Analog is SQL GROUP BY

The groupBy clause allows you to group the results according to the key you specified.
Thus, it is possible to group example json by gender.

yaql> $.customers.groupBy($.name)

- Diana:
 - customer_id: 3
 name: Diana
 orders:
 - order_id: 4
 item: Drums
 quantity: 1
- Paul:
 - customer_id: 2
 name: Paul
 orders:
 - order_id: 2
 item: Banjo
 quantity: 2
 - order_id: 3
 item: Piano
 quantity: 1
- John:
 - customer_id: 1
 name: John
 orders:
 - order_id: 1
 item: Guitar
 quantity: 1

So, here you can see the difference between groupBy and orderBy. We use
the same parameter name for both operations, but in the output for groupBy
name is located in additional place before everything else.

Selecting

Note

Analog is SQL SELECT

The select method allows building new objects out of objects of some collection.
In the following example, the result will contain a list of name/orders pairs.

yaql> $.customers.select([$.name, $.orders])

- John:
 - order_id: 1
 item: Guitar
 quantity: 1
- Paul:
 - order_id: 2
 item: Banjo
 quantity: 2
 - order_id: 3
 item: Piano
 quantity: 1
- Diana:
 - order_id: 4
 item: Drums
 quantity: 1

Joining

Note

Analog is SQL JOIN

The join method creates a new collection by joining two other collections by
some condition.

yaql> $.customers.join($.customers_city, $1.customer_id = $2.customer_id, {customer=>$1.name, city=>$2.city, orders=>$1.orders})

- customer: John
 city: New York
 orders:
 - order_id: 1
 item: Guitar
 quantity: 1
- customer: Paul
 city: Saint Louis
 orders:
 - order_id: 2
 item: Banjo
 quantity: 2
 - order_id: 3
 item: Piano
 quantity: 1
- customer: Diana
 city: Mountain View
 orders:
 - order_id: 4
 item: Drums
 quantity: 1

Take an element from collection

YAQL supports two general methods that can help you to take elements from collection
skip and take.

yaql> $.customers.skip(1).take(2)

- customer_id: 2
 name: Paul
 orders:
 - order_id: 2
 item: Banjo
 quantity: 2
 - order_id: 3
 item: Piano
 quantity: 1
- customer_id: 3
 name: Diana
 orders:
 - order_id: 4
 item: Drums
 quantity: 1

First element of collection

The first method will return the first element of a collection.

yaql> $.customers.first()

- customer_id: 1
 name: John
 orders:
 - order_id: 1
 item: Guitar
 quantity: 1

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

Usage

This section is not ready yet.

Embedding YAQL

REPL utility

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

Language reference

YAQL is a single expression language and as such does not have any block
constructs, line formatting, end of statement marks or comments. The expression
can be of any length. All whitespace characters (including newline) that are
not enclosed in quote marks are stripped. Thus, the expressions may span
multiple lines.

Expressions consist of:

	Literals

	Keywords

	Variable access

	Function calls

	Binary and unary operators

	List expressions

	Dictionary expressions

	Index expressions

	Delegate expressions

Terminology

	YAQL - the name of the language - acronym for Yet Another Query Language

	yaql - Python implementation of the YAQL language (this package)

	expression - a YAQL query that takes context as an input and produces
result value

	context - an object that (directly or indirectly) holds all the data
available to expression and all the function implementations accessible to
expression

	host - the application that hosts the yaql interpreter. The host uses yaql
to evaluate expressions, provides initial data, and decides which functions
are going to be available to the expression. The host has ultimate power
to customize yaql - provide additional functions, operators, decide not to
use standard library or use only parts of it, override function and operator
behavior

	variable - any data item that is available through the context

	function - a Python callable that is exposed to the YAQL expression and
can be called either explicitly or implicitly

	delegate - a Python callable that is available as a context variable (in
expression data rather than registered in context)

	operator - a form of implicit function on one (unary operator) or two
(binary operator) operands

	alphanumeric - consists of latin letters and digits (A-Z, a-z, 0-9)

Literals

Literals refer to fixed values in expressions. YAQL has the following literals:

	Integer literals: 123

	Floating point literals: 1.23, 1.0

	Boolean and null literals represented by keywords (see below)

	String literals enclosed in either single (‘) or double (”) quotes:
"abc", 'def'. The backslash () character is used to escape
characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character

	Verbatim strings enclosed in back quote characters, for example `abc`,
are used to suppress escape sequences. This is equivalent to r'strings'
in Python and is especially useful for regular expressions

Keywords

Keyword is a sequence of characters that conforms to the following criteria:

	Consists of non-zero alphanumeric characters and an underscore (_)

	Doesn’t start with a digit

	Doesn’t start with two underscore characters (__)

	Is not enclosed in quote marks of any type

YAQL has only three predefined keywords: true, false, and null that have
the value of similar JSON keywords.

There are also four keyword operators: and, or, not, in. However, this
list is not fixed. The yaql host may decide to have additional keyword
operators or not to have any of the four aforementioned keywords.

All other keywords have the value of their string representation. Thus, except
for the predefined keywords and operators they can be considered as string
literals and can be used anywhere where string is expected. However the
opposite is not true. That is, keywords can be used as string literals but
string literals cannot be used where a token is expected.

Examples:

	John + Snow - the same as "John" + "Snow"

	true + love - syntactically valid, but cannot be evaluated because
there is no plus operator that accepts boolean and string (unless you define
one)

	not true - evaluates to false, not is an operator

	"foo"() - invalid expression because the function name must be a token

	John Snow - invalid expression - two tokens with no operator between
them

Variable access

Each YAQL expression is a function that takes inputs (arguments) and produces
the result value (usually by doing some computations on those inputs).
Expressions get the input through a context - an object that holds all the
data and a list of functions, available for expression.

Besides the argument values, expressions may populate additional data items
to the context. All these data are collectively known as a variables and
available to all parts of an expression (unless overwritten with another
value).

The syntax for accessing variable values is $variableName where
variableName is the name of the variable. Variable names may consist of
alphanumeric and underscore characters only. Unlike tokens, variable names
may start with digit, any number of underscores and even be an empty string.
By convention, the first (usually the single) function parameter is accessible
through $ expression (i.e. empty string variable name) which is an alias
for $1. The usual case is to pass the main expression data in a single
structure (document) and access it through the $ variable.

If the variable with given name is not provided, it is assumed to be null.
There is no built-in syntax to check if a variable exists to distinguish cases
where it does not and when it is just set to null. However in the future such a
function might be added to yaql standard library.

When the yaql parser encounters the $variable expression, it automatically
translates it to the #get_context_data("$variable") function call.
By default, the #get_context_data function returns a variable value from the
current context. However the yaql host may decide to override it and provide
another behavior. For example, the host may try to look up the value in an
external data source (database) or throw an exception due to a missing
variable.

Function calls

The power of YAQL comes from the fact that almost everything in YAQL is a
function call (explicit or implicit) and any function may be overridden
by the host. In YAQL there are two types of functions:

	explicit function - those that can be called from expressions

	implicit (system) functions - functions with predefined names that get
called upon some operations. For example, 2 + 3 is translated to
#operator_+(2, 3). In this case, #operator_+ is the name of the
implicit function. However, because #operator_+(2, 3) is not a valid YAQL
expression (because of #), implicit functions cannot be called explicitly
but still can be redefined by the host.

The syntax for explicit function is:

call ::= funcName "(" [parameters] ")"
funcName ::= token
parameters ::= positionalParameters |
 keywordParameters |
 positionalParameters "," keywordParameters
positionalParameters ::= parameter ("," parameter)*
parameter ::= expression | empty-string
keywordParameters ::= keywordParameter ("," keywordParameter)
keywordParameter ::= parameterName "=>" expression
parameterName ::= token

In simple words:

	The function name must be a token.

	Parameters may be positional, keyword or both. But keyword parameters
may not come before positional.

	Positional parameters can be skipped if they have a default value, for
example, foo(1,,3).

	Keyword arguments must have a token name that must match the parameter name
in the function declaration. Therefore, you must know the function signature
for the right name.

Examples:

	foo(2 + 3)

	bar(hello, world)

	baz(a,b, kwparam1 => c, kwparam2 => d)

Functions have ultimate control over how they can be called. In particular:

	Each parameter may (and usually does) have an associated type check. That is,
the function may specify that the expected parameter type and if it can be
null.

	Usually, any parameters can be passed either by positional or keyword syntax.
However, function declaration may force one particular way and make it
positional-only or keyword-only.

	A function may have a variable number of positional (aka *args) and/or
keyword (aka **kwarg) arguments.

	In most languages, function arguments are evaluated prior to function
invocation. This is not always true in YAQL. In YAQL, a function may declare
a lazy argument. In this case, it is not evaluated and the function
implementation receives a passed value as a callable or even as an AST,
depending on how the parameter was declared. Thus in YAQL there is no special
syntax for lambdas. foo($ + 1) may mean either “call foo with value of
$ + 1” or “call foo with expression $ + 1 as a parameter”. In the
latter case it corresponds to foo(lambda *args, **kwargs: args[0] + 1) in
Python. Actual argument interpretation depends on the parameter declaration.

	Function may decide to disable keyword argument syntax altogether. For such
functions, the name => expr expression will be interpreted as a
positional parameter yaql.language.utils.MappingRule(name, expr) and
the left side of => can be any expression and not just a keyword. This
allows for functions like switch($ > 0 => 1, $ < 0 => -1, $ = 0 => 0).

Additionally, there are three subtypes of explicit functions. Suppose that
there is a declared function foo(string, int). By default, the syntax to
call it will be foo(something, 123). But it can be declared as a method.
In this case, the syntax is going to be something.foo(123). Because of the
type checking, something.foo(123) will work since something is a
string, but not the 123.foo(456). Thus foo becomes a method of a string
type.

A function may also be declared as being an extension method. If foo were to be
declared as an extension method it could be called both as a function
(foo(string, int)) and as a method (something.foo(123)).

YAQL makes use of a full function signature to determine which function
implementation needs to be executed. This allows several overloads of the same
function as long as they differ by parameter count or parameter type,
or anything else that allows unambiguous identification of the right overload
from the function call expression. For example, something.foo(123) may
be resolved to a completely different implementation of foo from that in
foo(something, 123) if there are two functions with the name foo present
in the context, but one of them was declared as a function while the other as
a method. If several overloads are equally suitable for the call expression,
an AmbiguousFunctionException or AmbiguousMethodException exception gets
raised.

Operators

YAQL has both binary and unary operators, like most other languages do.
Parentheses and => sequence are not considered as operators and handled
internally by the yaql parser. However, it is possible to configure yaql to use
sequence other than => for that purpose.

The list of available operators is not fixed and can be modified by the host.
The following operators are available by default:

Binary operators:

	Group
	Operators

	math operators
	+, -, *, /, mod

	comparision operators
	>, <, >=, <=, =, !=

	logical operators
	and, or

	method/member access
	., ?.

	regex operators
	=~, !~

	membership operator
	in

	context passing operator
	->

Unary operators:

	Group
	Operators

	math operators
	+, -

	logical operators
	not

YAQL supports for both prefix and suffix unary operators. However, only the
prefix operators are provided by default.

In YAQL there are no built-in operators. The parser is given a list of all
possible operator names (symbols), their associativity, precedence, and type,
but it knows nothing about what operators are applicable for what operands.
Each time a parser recognizes the X OP Y construct and OP is a known
binary operator name, it translates the expression to #operator_OP(X, Y).
Thus. 2 + 3 becomes #operator_+(2, 3) where #operator_+ is an
implicit function with several implementations including the one for number
addition and defined in standard library. The host may override it and even
completely disable it. For unary operators, OP X (or X OP for suffix
unary operators) becomes #unary_operator_OP(X).

Upon yaql parser initialization, an operator might be given an alias name.
In such cases, X OP Y is translated to *ALIAS(X, Y) and OP X to
*ALIAS(X). This decouples the operator implementation from the operator
symbol. For example, the = operator has the equal alias. The host may
configure yaql to have the == operator instead of = keeping the same alias
so that operator implementation and all its consumers work equally well for the
new operator symbol. In default configuration only = and != operators have
alias names.

For information on default operators, see the YAQL standard library reference.

List expressions

List expressions have the following form:

listExpression ::= "[" [expressions] "]"
expressions ::= expression ("," expression)*

When a yaql parser encounters an expression of the form [A, B, C], it
translates it into #list(A, B, C) (for arbitrary number of arguments).

Default #list function implementation in standard library produces a list
(tuple) comprised of given elements. However, the host might decide to give it
a different implementation.

Map expressions

Map expressions have the following form:

mapExpression ::= "{" [mappings] "}"
mappings ::= mapping ("," mapping)*
mapping ::= expression "=>" expression

When a yaql parser encounters an expression of the form {A => X, B => Y},
it translates it into #map(A => X, B => Y).

The default #map implementation disables the keyword arguments syntax and
thus receives a variable length list of mappings, which allows dictionary
keys to be expressions rather than a keyword. It returns a (frozen) dictionary
that itself can be used as a key in another map expression. For example,
{{a => b} => {[2 + 2, 2 * 2] => 4}} is a valid YAQL expression though
yaql REPL utility will fail to display its output due to the fact that it is
not JSON-compatible.

Index expressions

Index expressions have the following form:

indexExpression ::= expression listExpression

Examples:

	[1, 2, 3][0]

	$arr[$index + 1]

	{foo => 1, bar => 2}[foo]

When a yaql parser encounters such an expression, it translates it into
#indexer(expression, index).

The standard library provides a number of #indexer implementations for
different types.

The right side of the index expression is a list expression. Therefore, an
expression like $foo[1, x, null] is also a valid YAQL expression and will
be translated to #indexer($foo, 1, x, null). However, any attempt to
evaluate such expression will result in NoMatchingFunctionException exception
because there is no #indexer implementation that accepts such arguments
(unless the host defines one).

Delegate expressions

Delegate expressions is an optional language feature that is disabled by
default. It makes possible to pass delegates (callables) as part of the context
data and invoke them from the expression. It has the same syntax as explicit
function calls with the only difference being that instead of function name
(keyword) there is a non-keyword expression that must produce the delegate.

Examples:

	$foo(1, arg => 2) - call delegate returned by $foo with parameters
(1, arg => 2)

	[$foo, $bar][0](x) - the same as $foo(x)

	foo()() - can be written as (foo())() - foo() must return a
delegate

Delegate expressions are translated into #call(callable, arguments).
Thus $foo(1, 2) becomes #call($foo, 1, 2).

The default implementation of #call invokes the result of the evaluation
of its first arguments with the given arguments.

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

Customizing and extending yaql

Configuring yaql parser

yaql has two main points of customization:

	yaql engine settings allow one to configure the query language and execution
flags shared by all queries that are processed by the same YAQL parser. This
includes the list of available operators, yaql resources quotas, and other
engine parameters.

	By customizing the yaql context object, one can change the list of available
functions (add new, override existing) and change naming conventions.

Engine options are supplied to the yaql.language.factory.YaqlFactory class.
YaqlFactory is used to create instances of the YaqlEngine, that is the YAQL
parser. This is done by calling the create method of the factory. Once the
engine is created, it captures all the factory options so that they cannot be
changed for that particular parser any longer. In general, it is recommended
to have one yal engine instance per application, because construction of the
parser is an expensive operation and the parser has no internal state and thus
can be reused for several queries, including in different threads. However, the
host may have several YAQL parsers for different option sets or dialects.

On the contrary, the context object is cheap to create and is mutable by
design, since it holds the input data for the query. In most cases it is a good
idea to execute each query in its own context, although all such contexts might
be the children of some other, fixed context that is created just once.

Customizing operators

YaqlFactory object holds an operator table that is recognized by the parser
produced by it. By default, it is prepopulated with standard operators and
most applications never need to do anything here. However, if the host wants
to have some custom operator symbol available in its expressions, this table
needs to be modified. YaqlFactory holds the operator symbols and other
information about the operator that is relevant to the parser, but not the
implementations. The implementations (what operators actually do) are put
in the context and can be configured for each expression, but the list of
available operator symbols cannot be changed for the parser once it has been
built.

Each operator in the table is represented by the tuple
`(op_symbols, op_type, op_alias):

	op_symbols are the operator symbols. There are no limitations on how the
operators can be called as long as they do not contain whitespaces. It can
be one symbol (like +), several symbols (like =~) or even a word
(like not). List/index and dictionary expressions require [] and {}
binary left associative operators to be present in the table. Otherwise
corresponding constructions will not work (and can be disabled by removing
corresponding operators from the table)

	op_type is one of the values in yaql.language.factory.OperatorType
enumeration: BINARY_LEFT_ASSOCIATIVE and BINARY_RIGHT_ASSOCIATIVE for binary
operators, PREFIX_UNARY and SUFFIX_UNARY for unary operators, NAME_VALUE_PAIR
for the keyword/mapping pseudo-operator (that is =>, by default).

	op_alias is the alias name for the operator. See YAQL language reference on
how operator aliases are used. Aliases are optional and most operators do not
have it and thus are represented by a tuple of two elements.

Operators are grouped by their precedence. Operators with a higher precedence
come first in the operator table. Operators within the same group have the same
precedence. Groups are separated by an empty tuple (()).

The operator table, which is a list of tuples, is available through the
operators attribute of the factory and is open for modification. To simplify
the editing, YaqlFactory provides the insert_operator helper method to
insert an operator before of after some other existing operator to get the
desired precedence.

Execution options

Execution options are the settings and flags that affect execution of each
query and are accessible and processed by both yaql runtime and standard
library functions.

Options are passed to the create method of the YaqlFactory class in a
plain key-value dictionary. The factory does not process the dictionary but
rather attaches the options to the constructed engine (YAQL parser) after which
they cannot be changed. However, the engine provides a copy method that can
be used to clone the engine with different execution options.

The options that are honored by the yaql are:

	“yaql.limitIterators”: <INT> limit iterators by the given number of
elements. When set, each time any function declares its parameter to be
iterator, that iterator is modified to not produce more than a given number
of items. Also, upon the expression evaluation, all the output collections
and iterators are limited as well. If not set (or set to -1) the result data
is allowed to contain endless iterators that would cause errors if the result
where to be serialized (to JSON or any other format). Default is -1 (do not
limit).

	“yaql.memoryQuota”: <INT> - the memory usage quota (in bytes) for all
data produced by the expression (or any part of it). Default is -1 (do not
limit).

	“yaql.convertTuplesToLists”: <True|False>. When set to true, yaql converts
all tuples in the expression result to lists. The default is True.

	“yaql.convertSetsToLists”: <True|False>. When set to true, yaql converts
all sets in the expression result to lists. Otherwise the produced result
may contain sets that are not JSON-serializable. The default is False.

	“yaql.iterableDicts”: <True|False>. When set to true, dictionaries are
considered to be iterable and iteration over dictionaries produces their
keys (as in Python and yaql 0.2). Defaults to False.

Consumers are free to use their own settings or use the options dictionary to
provide some other environment information to their own custom functions.

Other engine customizations

YaqlFactory class initializer has two optional parameters that can be used
to further customize the YAQL parser:

	keyword_operator allows one to configure keyword/mapping symbol. The
default is =>. Ability to pass named arguments can be disabled altogether
if None or empty string is provided.

	allow_delegates enables or disables delegate expression parsing. Default
is False (disabled).

Working with contexts

Context is an interface that yaql runtime uses to obtain a list of available
functions and variables. Any context object must implement
yaql.language.contexts.ContextBase interface and yaql provides several such
implementations ranging from the yaql.language.contexts.Context class,
that is a basic context implementation, to contexts that allow one to merge
several other contexts into one or link an existing context into the list of
contexts.

Any context may have a parent context. Any lookup that is done in the context
is also performed in its parent context, extending all the way up its chain of
contexts. During expression evaluation, yaql can create a long chain of
contexts that are all children of the context that was originally passed with
the query.

Most of the yaql customizations are achieved by context manipulations.
This includes:

	Overriding YAQL functions

	Building context chains and evaluating sub-expressions in different
contexts

	Composing context chains from pre-built contexts

	Having custom ContextBase implementations and mixing them with regular
contexts in the single chain

In fact, it is the context which provides the entry point for expression
evaluation. And thus custom context implementations may completely change
the way queries are evaluated.

There are three ways to create a context instance:

	Directly instantiate one of ContextBase implementations to get an empty
context

	Call create_child_context method on any existing context object to get a
child context

#. Use yaql.create_context function to creates the root context that is
prepopulated with YAQL standard library functions

yaql.create_context allows one to selectively disable standard library
modules.

Naming conventions

Naming conventions define how Python functions and parameter names are
translated into YAQL names. Conventions are implementations of the
yaql.language.conventions.Convention interface that has just two methods:
one to translate the function name and another to translate the function
parameter name.

yaql has two implementations included:

	yaql.language.conventions.CamelCaseConvention’ that translates Python
conventions into camel case. For example, it will convert
`my_func(arg_name) into myFunc(argName). This convention is used by
default.

	`yaql.language.conventions.PythonConvention’ that leaves function and
parameter names intact.

Each context, either directly or indirectly through its parent context, is
configured to use some convention. When a function is registered in the
context, its name and parameters are translated with the convention methods.
Also, regardless of convention used, all trailing underscores are stripped
from the names. This makes it possible to define several Python functions that
differ only by trailing underscores and get the same name in YAQL (to create
several overloads of single function). Also, this allow one to have function
or parameter names that would otherwise conflict with Python keywords.

Instance of convention class can be specified as a context initializer
parameter or as a parameter of yaql.create_context function. Child contexts
created with the create_child_context method inherit their parent convention.

Extending yaql

Extending yaql with new functions

For a function to become available to YAQL queries, it must be present in
the provided context object. The default context implementation
(yaql.language.contexts.Context) has a register_function method to register
the function implementation.

In yaql, all functions are represented by instances of the
yaql.language.specs.FunctionDefinition class. FunctionDefinition describes
the complete function signature including:

	Function name

	List of parameters - instances of yaql.language.specs.ParameterDefinition

	Function payload (Python callable)

	Function type: function, method or extension method

	The flag to disable the keyword arguments syntax for the function

	Documentation string

	Custom function metadata (dict)

register_function method can accept either an instance of
the FunctionDefinition class or a regular Python function. In the latter
case, it constructs a FunctionDefinition instance from the declaration of
the function using Python introspection. Because a YAQL function signature has
much more information than the Python one, yaql provides a number of function
decorators that can be used to fill the missing properties.

The decorators are located in the yaql.language.specs module.
Below is the list of available function decorators:

	@name(function_name): set function name to be function_name rather
than its Python name

	@parameter(...) is used to declare the type of one of the function
parameters

	@inject(...) is used to declare a hidden function parameter

	@method declares function to be YAQL method

	@extension_method declares function to be YAQL extension method

	@no_kwargs disables the keyword arguments syntax for the function

	@meta(name, value) appends the name attribute with the given value to
the function metadata dictionary

Specifying function parameter types

When yaql constructs FunctionDefinition, it collects all possible information
about its parameters. For each parameter, it records its name, position,
whether it is a keyword-only argument (available in Python 3), whether it is
an *args or **kwargs, and its default parameter value.

The only parameter attribute that cannot be obtained through retrospection is
the parameter type. For that purpose, yaql has a @parameter(name, type)
decorator that can be used to explicitly declare the parameter type.
name must match the name of one of the function parameters, and type must
be of the yaql.language.yaqltypes.SmartType type.

SmartType is the base class for all yaql type descriptors - classes that
check if the value is compatible with the desired type and can do type
conversion between compatible types.

YAQL type system slightly differs from Python’s:

	Strings are not considered to be collections of characters

	Booleans are not integers

	Dictionaries are not iterable

	For most of the types one can specify if the null (None) value is
acceptable

yaql.language.yaqltypes module has many useful smart-type classes. The most
generic smart-type for primitive types is the PythonType class, that
validates if the value is instance of a given Python type. Due to the mentioned
differences between YAQL and Python type systems and because
Python types have a lot of nuances (several string types, differences between
Python 2 and Python 3, separation between mutable and immutable type versions:
list-tuple, set-frozenset, dict-FrozenDict, which is missing in Python
and provided by the yaql instead), yaql provides specialized smart-types
for most primitive types:

	String - str and unicode

	Integer

	Number - integer of float

	DateTime

	Sequence - fixed-size iterable collection, except for the dictionary

	Iterable - any iterable or generator

	Iterator - iterator over the iterable

And several specialized variants that enforce particular representation in the
YAQL syntax:

	Keyword

	BooleanConstant

	NumericConstant

	StringConstant

It is also possible to aggregate several smart-types so that the value can be
of any given type or conform to all of them:

	AnyOf

	Chain

	NotOfType

These three smart-types accept other smart-type(s) as their initializer
parameter(s).

In addition to the smart-types, the second parameter of the @parameter can be
a Python type. For example, @parameter("name", unicode) or
@parameter("name", unicode, nullable=True). In this case the Python type
is automatically wrapped in the PythonType smart-type. If nullability is not
specified, yaql tries to infer it from the parameter declaration - it is
nullable only if the parameter has its default value set to None.

Lazy evaluated function parameters

All the smart-types from the previous section are for parameters that are
evaluated before the function gets invoked. But sometimes the function might
need the parameter to remain unevaluated so that it can be evaluated by the
function itself, possibly with additional parameters or in a different context.

There are two possible representations of non-evaluated arguments:

	Get it as a Python callable that the function can call to do the evaluation

	Get it as a YAQL expression (AST), that can be analyzed

The first method is available through the Lambda smart-type. The parameter,
which is declared as a Lambda(), has an *args/**kwargs signature and can
be called from the function: parameter(arg1, arg2). If it was declared as
Lambda(with_context=True) the function may invoke it in a context, other
than that which is used for the function:
parameter(new_context, arg1, arg2). Lambda(method=True) specifies
that the parameter must be a method and the caller can specify the receiver
object for it: parameter(receiver, arg1, arg2). Parameters can also be
combined: Lambda(with_context=True, method=True) so the callable is
invoked as parameter(receiver, new_context, arg1, arg2). All supplied
callable arguments are automatically published to the $1 ($), $2 and
so on context variables for the context in which the callable will be executed.

The second method is available through the YaqlExpression smart-type. It
also allows one to request the parameter to be of a particular expression type
rather than an arbitrary YAQL expression.

Auto-injected function parameters

Besides regular parameters, yaql also supports auto-injected (hidden)
parameters. This is also known as a function parameter dependency injection.
The values of injected parameters come from the yaql runtime rather than from
the caller. Functions use injected parameters to get information on their
execution environment.

Auto-injected parameters are declared using the @inject(...) decorator,
which has exactly the same signature as @parameter with the only difference
being that @inject checks that that the supplied smart-type is an instance
of the yaql.language.yaqltypes.HiddenParameterType class (in addition to
SmartType), whereas the @parameter decorator checks that it is not. This
difference exists to clearly distinguish explicitly passed parameters from
those that are injected by the system.

yaql has the following hidden parameter smart types:

	Context - injects the current function context object

	Engine - injects YaqlEngine object that was used to parse the expression.
Engine object may be used to access execution options or to parse some other
expression

	FunctionDefinition - FunctionDefinition object of the function. May be
used to obtain function metadata and doc-string

	Delegate - injects a Python callable to some other YAQL function by its
name. This is a convenient way to call one YAQL function from another without
depending on its Python implementation signature and location. The syntax
is very similar to Lambda smart-type

	Super - similar to Delegate - injects callable to an overload of itself
from the parent context. Useful when the function overload wants to call its
base implementation (analogous to Python’s super())

	Receiver - injects a method receiver object if the function was called as
a method and None otherwise. Can be used in an extension method to
distinguish the case, when it was invoked as a method rather than as a
function. Do not do it without a good reason!

	YaqlInterface - injects a convenient wrapper (YaqlInterface) around yaql
functionality, which also encapsulates many of the values above

Auto-injected parameters may appear anywhere in the function signature as they
do not affect caller syntax. Implementations can add additional hidden
parameters without breaking existing queries. However, it is important to
call YAQL function implementations through the yaql mechanisms (such as
Delegate), rather than to call their Python implementations directly.

Automatic parameters

In some cases there is no need to declare the parameter at all. yaql uses
parameter name and default value to guess the parameter type if it was not
declared.

If the parameter name is context or __context it will automatically
be treated as if it was declared as a Context. engine/__engine is
considered as an Engine, and yaql_interface/__yaql_interface is
considered as a YaqlInterface.

The host can override this logic by providing a callable to Context’s
register_function method through the parameter_type_func parameter.
When yaql encounters an undeclared parameter, it calls this function, passing
the parameter name as an argument, and expects it to return a smart-type
for the parameter.

If the parameter_type_func callable returned None, yaql would assume that
the smart type should be PythonType(object), that is anything, except for
the None value, unless the parameter had the default value None.

Function resolution rules

Function resolution rules are used to determine the correct overload of the
function when more than one overload is present in the context. Each time a
function with a given list of parameters is called yaql does the following:

	Walks through the chain of context objects and collects all the
implementations with a given name and appropriate type (either functions
and extension methods or methods and extensions methods, depending on the
call syntax).

	All found overloads are organized into layers so that overloads from the
same context will be put in the same layer whereas overloads from different
contexts are in different layers. Overloads from contexts that are closer
to the initial context have precedence over those which were obtained from
the parent contexts. Also FunctionDefinition may have a flag that prevents
all overload lookups in the parent contexts. If the search encounters an
overload with such a flag, it does not go any further in the chain.

	Scan all found overloads and exclude those, that cannot be called by the
given syntax. This can happen because the overload has more mandatory
parameters than the arguments in the calling expression, or because it
passes the argument using the keyword name and no such parameter exists.

	Validates laziness of overload parameters. If at least one function overload
has a lazy evaluated parameter all other overloads must have it in the same
position. Violation of this rule causes an exception to be thrown.

	All the non-lazy parameters are evaluated. The result values are validated
by appropriate smart-type instances corresponding to each parameter of
each overload. All the overloads that are not type-compatible with the
given arguments are excluded in each layer.

	Take first non-empty layer. If no such layer exists (that is all the
overloads were excluded) then throw an exception.

	If the found layer has more than one overload, then we have an ambiguity.
In this case an exception is thrown since we cannot unambiguously determine
the right overload.

	Otherwise, call the single overload with previously evaluated arguments.

Function development hints

	Avoid side effects in your functions, unless you absolutely have to.

	Do not make changes to the data structures coming from the parameters or the
context. Functions that modify the data should return the modified copy
rather than touch the original.

	If you need to make changes to the context, create a child context and
make them there. It is usually possible to pass the new context to other
parts of the query.

	Strongly prefer immutable data structures over mutable ones. Use tuple`s
rather than `list`s, `frozenset instead of set. Python does not have a
built-in immutable dictionary class so yaql provides one on its own -
yaql.language.utils.FrozenDict.

	Do not call Python implementation of YAQL functions directly. yaql provides
plenty of ways to do so.

	Do not reuse contexts between multiple queries unless it is intentional.
However all of these contexts can be children of a single prepared context.

	Do not register all the custom functions for each query. It is better to
prepare all the contexts with functions at the beginning and then use
child contexts for each query executed.

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	yaql documentation

Standard YAQL Library

Comparison operators

Common module describes comparison operators for different types. Comparing
with null value is considered separately.

operator !=

Returns true if left and right are not equal, false otherwise.

It is system function and can be used to override behavior
of comparison between objects.

operator <

	Returns false. This function is called when left is not null and
right is null.

	signature:	left < right

	callAs:	operator

	arg left:	left operand

	argType left:	not null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns false. This function is called when left and right are null.

	signature:	left < right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns true. This function is called when left is null and
right is not.

	signature:	left < right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	not null

	returnType:	boolean

operator <=

	Returns false. This function is called when left is not null
and right is null.

	signature:	left <= right

	callAs:	operator

	arg left:	left operand

	argType left:	not null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns true. This function is called when left and right are null.

	signature:	left <= right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns true. This function is called when left is null and
right is not.

	signature:	left <= right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	not null

	returnType:	boolean

operator =

Returns true if left and right are equal, false otherwise.

It is system function and can be used to override behavior
of comparison between objects.

operator >

	Returns true. This function is called when left is not null
and right is null.

	signature:	left > right

	callAs:	operator

	arg left:	left operand

	argType left:	not null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns false. This function is called when left and right are null.

	signature:	left > right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns false. This function is called when left is null and right
is not.

	signature:	left > right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	not null

	returnType:	boolean

operator >=

	Returns true. This function is called when left is not null
and right is null.

	signature:	left >= right

	callAs:	operator

	arg left:	left operand

	argType left:	not null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns true. This function is called when left and right are null.

	signature:	left >= right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	null

	returnType:	boolean

	Returns false. This function is called when left is null and
right is not.

	signature:	left >= right

	callAs:	operator

	arg left:	left operand

	argType left:	null

	arg right:	right operand

	argType right:	not null

	returnType:	boolean

Boolean logic functions

Whenever an expression is used in the context of boolean operations, the
following values are interpreted as false: false, null, numeric zero of
any type, empty strings, empty dict, empty list, empty set, zero timespan.
All other values are interpreted as true.

bool

Returns true or false after value type conversion to boolean.
Function returns false if value is 0, false, empty list, empty dictionary,
empty string, empty set, and timespan(). All other values are considered
to be true.

	signature:	bool(value)

	callAs:	function

	arg value:	value to be converted

	argType value:	any

	returnType:	boolean

yaql> bool(1)
true
yaql> bool([])
false

isBoolean

Returns true if value is boolean, otherwise false.

	signature:	isBoolean(value)

	callAs:	function

	arg value:	value to check

	argType value:	any

	returnType:	boolean

yaql> isBoolean(false)
true
yaql> isBoolean(0)
false

operator and

Returns left operand if it evaluates to false. Otherwise evaluates right
operand and returns it.

	signature:	left and right

	callAs:	operator

	arg left:	left operand

	argType left:	any

	arg right:	right operand

	argType right:	any

	returnType:	any (left or right operand types)

yaql> 1 and 0
0
yaql> 1 and 2
2
yaql> [] and 1
[]

operator not

Returns true if arg evaluates to false. Otherwise returns false.

	signature:	not arg

	callAs:	operator

	arg arg:	value to be converted

	argType arg:	any

	returnType:	boolean

yaql> not true
false
yaql> not {}
true
yaql> not [1]
false

operator or

Returns left operand if it evaluates to true. Otherwise evaluates right
operand and returns it.

	signature:	left or right

	callAs:	operator

	arg left:	left operand

	argType left:	any

	arg right:	right operand

	argType right:	any

	returnType:	any (left or right operand types)

yaql> 1 or 0
1
yaql> 1 or 2
1
yaql> [] or 1
1

Working with collections

Functions that produce or consume finite collections - lists, dicts and sets.

add

Returns a new set with added args.

	signature:	set.add([args])

	callAs:	method

	receiverArg set:

		input set

	argType set:	set

	arg [args]:	values to be added to set

	argType [args]:	chain of any type

	returnType:	set

yaql> set(0, 1).add("", [1, 2, 3])
[0, 1, "", [1, 2, 3]]

contains

Returns true if value is contained in collection, false otherwise.

	signature:	collection.contains(value)

	callAs:	method

	receiverArg collection:

		collection to find occurrence in

	argType collection:

		iterable

	arg value:	value to be checked for occurrence

	argType value:	any

	returnType:	boolean

yaql> ["a", "b"].contains("a")
true

containsKey

Returns true if the dictionary contains the key, false otherwise.

	signature:	dict.containsKey(key)

	callAs:	method

	receiverArg dict:

		dictionary to find occurrence in

	argType dict:	mapping

	arg key:	value to be checked for occurrence

	argType key:	any

	returnType:	boolean

yaql> {"a" => 1, "b" => 2}.containsKey("a")
true

containsValue

Returns true if the dictionary contains the value, false otherwise.

	signature:	dict.containsValue(value)

	callAs:	method

	receiverArg dict:

		dictionary to find occurrence in

	argType dict:	mapping

	arg value:	value to be checked for occurrence

	argType value:	any

	returnType:	boolean

yaql> {"a" => 1, "b" => 2}.containsValue("a")
false
yaql> {"a" => 1, "b" => 2}.containsValue(2)
true

delete

	Returns collection with removed [position, position+count) elements.

	signature:	collection.delete(position, count => 1)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg position:	index to start remove

	argType position:

		integer

	arg count:	how many elements to remove, 1 by default

	argType position:

		integer

	returnType:	iterable

yaql> [0, 1, 3, 4, 2].delete(2, 2)
[0, 1, 2]

	Returns dict with keys removed.

	signature:	dict.delete([args])

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	mapping

	arg [args]:	keys to be removed from dictionary

	argType [args]:	chain of keywords

	returnType:	mapping

yaql> {"a" => 1, "b" => 2, "c" => 3}.delete("a", "c")
{"b": 2}

deleteAll

Returns dict with keys removed. Keys are provided as an iterable
collection.

	signature:	dict.deleteAll(keys)

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	mapping

	arg keys:	keys to be removed from dictionary

	argType keys:	iterable

	returnType:	mapping

yaql> {"a" => 1, "b" => 2, "c" => 3}.deleteAll(["a", "c"])
{"b": 2}

dict

	Returns dictionary of provided keyword values.

	signature:	dict([args])

	callAs:	function

	arg [args]:	arguments to create a dictionary

	argType [args]:	mappings

	returnType:	dictionary

yaql> dict(a => 1, b => 2)
{ "a": 1, "b": 2}

	Returns dictionary with keys and values built on items pairs.

	signature:	dict(items)

	callAs:	function

	arg items:	list of pairs [key, value] for building dictionary

	argType items:	list

	returnType:	dictionary

yaql> dict([["a", 2], ["b", 4]])
{"a": 2, "b": 4}

	Returns dict built on collection where keys are keySelector applied to
collection elements and values are valueSelector applied to collection
elements.

	signature:	collection.toDict(keySelector, valueSelector => null)

	callAs:	method

	receiverArg collection:

		collection to build dict from

	argType collection:

		iterable

	arg keySelector:

		lambda function to get keys from collection elements

	argType keySelector:

		lambda

	arg valueSelector:

		lambda function to get values from collection elements.
null by default, which means values to be collection items

	argType valueSelector:

		lambda

	returnType:	dictionary

yaql> [1, 2].toDict($, $ + 1)
{"1": 2, "2": 3}

difference

Return the difference of left and right sets as a new set.

	signature:	left.difference(right)

	callAs:	method

	receiverArg left:

		left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	set

yaql> set(0, 1, 2).difference(set(0, 1))
[2]

flatten

Returns an iterator to the recursive traversal of collection.

	signature:	collection.flatten()

	callAs:	method

	receiverArg collection:

		collection to be traversed

	argType collection:

		iterable

	returnType:	list

yaql> ["a", ["b", [2,3]]].flatten()
["a", "b", 2, 3]

get

Returns value of a dictionary by given key or default if there is
no such key.

	signature:	dict.get(key, default => null)

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	arg key:	key

	argType key:	keyword

	arg default:	default value to be returned if key is missing in dictionary.
null by default

	argType default:

		any

	returnType:	any (appropriate value type)

yaql> {"a" => 1, "b" => 2}.get("c")
null
yaql> {"a" => 1, "b" => 2}.get("c", 3)
3

insert

	Returns collection with inserted value at the given position.

	signature:	collection.insert(position, value)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg position:	index for insertion. value is inserted in the end if
position greater than collection size

	argType position:

		integer

	arg value:	value to be inserted

	argType value:	any

	returnType:	iterable

yaql> [0, 1, 3].insert(2, 2)
[0, 1, 2, 3]

	Returns collection with inserted value at the given position.

	signature:	collection.insert(position, value)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		sequence

	arg position:	index for insertion. value is inserted in the end if
position greater than collection size

	argType position:

		integer

	arg value:	value to be inserted

	argType value:	any

	returnType:	sequence

yaql> [0, 1, 3].insert(2, 2)
[0, 1, 2, 3]

insertMany

Returns collection with inserted values at the given position.

	signature:	collection.insertMany(position, values)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg position:	index for insertion. value is inserted in the end if
position greater than collection size

	argType position:

		integer

	arg values:	items to be inserted

	argType values:	iterable

	returnType:	iterable

yaql> [0, 1, 3].insertMany(2, [2, 22])
[0, 1, 2, 22, 3]

intersect

Returns set with elements common to left and right sets.

	signature:	left.intersect(right)

	callAs:	method

	receiverArg left:

		left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	set

yaql> set(0, 1, 2).intersect(set(0, 1))
[0, 1]

isDict

Returns true if arg is dictionary, false otherwise.

	signature:	isDict(arg)

	callAs:	function

	arg arg:	value to be checked

	argType arg:	any

	returnType:	boolean

yaql> isDict([1, 2])
false
yaql> isDict({"a" => 1})
true

isList

Returns true if arg is a list, false otherwise.

	signature:	isList(arg)

	callAs:	function

	arg arg:	value to be checked

	argType arg:	any

	returnType:	boolean

yaql> isList([1, 2])
true
yaql> isList({"a" => 1})
false

isSet

Returns true if arg is set, false otherwise.

	signature:	isSet(arg)

	callAs:	function

	arg arg:	value to be checked

	argType arg:	any

	returnType:	boolean

yaql> isSet({"a" => 1})
false
yaql> isSet(set(1, 2))
true

items

Returns an iterator over pairs [key, value] of input dict.

	signature:	dict.items()

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	returnType:	iterator

yaql> {"a" => 1, "b" => 2}.items()
[["a", 1], ["b", 2]]

keys

Returns an iterator over the dictionary keys.

	signature:	dict.keys()

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	returnType:	iterator

yaql> {"a" => 1, "b" => 2}.keys()
["a", "b"]

len

	Returns size of the dictionary.

	signature:	dict.len()

	callAs:	function or method

	receiverArg dict:

		input dictionary

	argType dict:	mapping

	returnType:	integer

yaql> {"a" => 1, "b" => 2}.len()
2

	Returns length of the list.

	signature:	sequence.len()

	callAs:	function or method

	receiverArg sequence:

		input sequence

	argType dict:	sequence

	returnType:	integer

yaql> [0, 1, 2].len()
3

	Returns size of the set.

	signature:	set.len()

	callAs:	function or method

	receiverArg set:

		input set

	argType set:	set

	returnType:	integer

yaql> set(0, 1, 2).len()
3

list

	Returns list of provided args.

	signature:	list([args])

	callAs:	function

	arg [args]:	arguments to create a list

	argType [args]:	any types

	returnType:	list

yaql> list(1, "", 2)
[1, "", 2]

	Returns list of provided args and unpacks arg element if it’s iterable.

	signature:	list([args])

	callAs:	function

	arg [args]:	arguments to create a list

	argType [args]:	chain of any types

	returnType:	list

yaql> list(1, "", range(2))
[1, "", 0, 1]

operator *

	Returns sequence repeated count times.

	signature:	left * right

	callAs:	operator

	arg left:	multiplier

	argType left:	integer

	arg right:	input sequence

	argType right:	sequence

	returnType:	sequence

yaql> 2 * [1, 2]
[1, 2, 1, 2]

	Returns sequence repeated count times.

	signature:	left * right

	callAs:	operator

	arg left:	input sequence

	argType left:	sequence

	arg right:	multiplier

	argType right:	integer

	returnType:	sequence

yaql> [1, 2] * 2
[1, 2, 1, 2]

operator +

	Returns combined left and right dictionaries.

	signature:	left + right

	callAs:	operator

	arg left:	left dictionary

	argType left:	mapping

	arg right:	right dictionary

	argType right:	mapping

	returnType:	mapping

yaql> {"a" => 1, b => 2} + {"b" => 3, "c" => 4}
{"a": 1, "c": 4, "b": 3}

	Returns two iterables concatenated.

	signature:	left + right

	callAs:	operator

	arg left:	left list

	argType left:	iterable

	arg right:	right list

	argType right:	iterable

	returnType:	iterable

yaql> [1, 2] + [3]
[1, 2, 3]

operator .

Returns value of a dictionary by given key.

	signature:	left.right

	callAs:	operator

	arg left:	input dictionary

	argType left:	dictionary

	arg right:	key

	argType right:	keyword

	returnType:	any (appropriate value type)

yaql> {"a" => 1, "b" => 2}.a
1

operator <

Returns true if left set is subset of right set and left size is strictly
less than right size, false otherwise.

	signature:	left < right

	callAs:	operator

	arg left:	left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	boolean

yaql> set(0) < set(0, 1)
true

operator <=

Returns true if left set is subset of right set.

	signature:	left <= right

	callAs:	operator

	arg left:	left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	boolean

yaql> set(0, 1) <= set(0, 1)
true

operator >

Returns true if right set is subset of left set and left size is strictly
greater than right size, false otherwise.

	signature:	left > right

	callAs:	operator

	arg left:	left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	boolean

yaql> set(0, 1) > set(0, 1)
false

operator >=

Returns true if right set is subset of left set.

	signature:	left >= right

	callAs:	operator

	arg left:	left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	boolean

yaql> set(0, 1) >= set(0, 1)
true

operator in

Returns true if there is at least one occurrence of value in collection,
false otherwise.

	signature:	left in right

	callAs:	operator

	arg left:	value to be checked for occurrence

	argType left:	any

	arg right:	collection to find occurrence in

	argType right:	iterable

	returnType:	boolean

yaql> "a" in ["a", "b"]
true

operator indexer

	Returns value of a dictionary by given key.

	signature:	left[right]

	callAs:	function

	arg left:	input dictionary

	argType left:	dictionary

	arg right:	key

	argType right:	keyword

	returnType:	any (appropriate value type)

yaql> {"a" => 1, "b" => 2}["a"]
1

	Returns value of a dictionary by given key or default if there is
no such key.

	signature:	left[right, default]

	callAs:	function

	arg left:	input dictionary

	argType left:	dictionary

	arg right:	key

	argType right:	keyword

	arg default:	default value to be returned if key is missing in dictionary

	argType default:

		any

	returnType:	any (appropriate value type)

yaql> {"a" => 1, "b" => 2}["c", 3]
3

	Returns value of sequence by given index.

	signature:	left[right]

	callAs:	function

	arg left:	input sequence

	argType left:	sequence

	arg right:	index

	argType right:	integer

	returnType:	any (appropriate value type)

yaql> ["a", "b"][0]
"a"

remove

Returns the set with excluded values provided in arguments.

	signature:	set.remove([args])

	callAs:	method

	receiverArg set:

		input set

	argType set:	set

	arg [args]:	values to be removed from set

	argType [args]:	chain of any type

	returnType:	set

yaql> set(0, 1, "", [1, 2, 3]).remove("", 0, [1, 2, 3])
[1]

replace

Returns collection where [position, position+count) elements are replaced
with value.

	signature:	collection.replace(position, value, count => 1)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg position:	index to start replace

	argType position:

		integer

	arg value:	value to be replaced with

	argType value:	any

	arg count:	how many elements to replace, 1 by default

	argType count:	integer

	returnType:	iterable

yaql> [0, 1, 3, 4, 2].replace(2, 100, 2)
[0, 1, 100, 2]

replaceMany

Returns collection where [position, position+count) elements are replaced
with values items.

	signature:	collection.replaceMany(position, values, count => 1)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg position:	index to start replace

	argType position:

		integer

	arg values:	items to replace

	argType values:	iterable

	arg count:	how many elements to replace, 1 by default

	argType count:	integer

	returnType:	iterable

yaql> [0, 1, 3, 4, 2].replaceMany(2, [100, 200], 2)
[0, 1, 100, 200, 2]

set

	Returns dict with provided key set to value.

	signature:	dict.set(key, value)

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	arg key:	key

	argType key:	keyword

	arg value:	value to be set to input key

	argType value:	any

	returnType:	dictionary

yaql> {"a" => 1, "b" => 2}.set("c", 3)
{"a": 1, "b": 2, "c": 3}
yaql> {"a" => 1, "b" => 2}.set("b", 3)
{"a": 1, "b": 3}

	Returns dict with replacements keys set to replacements values.

	signature:	dict.set(replacements)

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	arg replacements:

		mapping with keys and values to be set on input dict

	argType key:	dictionary

	returnType:	dictionary

yaql> {"a" => 1, "b" => 2}.set({"b" => 3, "c" => 4})
{"a": 1, "c": 4, "b": 3}

	Returns dict with args keys set to args values.

	signature:	dict.set([args])

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	arg [args]:	key-values to be set on input dict

	argType [args]:	chain of mappings

	returnType:	dictionary

yaql> {"a" => 1, "b" => 2}.set("b" => 3, "c" => 4)
{"a": 1, "c": 4, "b": 3}

	Returns set initialized with args.

	signature:	set([args])

	callAs:	function

	arg [args]:	args to build a set

	argType [args]:	chain of any type

	returnType:	set

yaql> set(0, "", [1, 2])
[0, "", [1, 2]]

symmetricDifference

Returns symmetric difference of left and right sets as a new set.

	signature:	left.symmetricDifference(right)

	callAs:	method

	receiverArg left:

		left set

	argType left:	set

	arg right:	right set

	argType right:	set

	returnType:	set

yaql> set(0, 1, 2).symmetricDifference(set(0, 1, 3))
[2, 3]

toList

Returns list built from iterable.

	signature:	collection.toList()

	callAs:	method

	receiverArg collection:

		collection to be transferred to list

	argType collection:

		iterable

	returnType:	list

yaql> range(3).toList()
[0, 1, 2]

toSet

Returns set built from iterable.

	signature:	collection.toSet()

	callAs:	method

	receiverArg collection:

		collection to build a set

	argType collection:

		iterable

	returnType:	set

yaql> [0, 1, 1, 2].toSet()
[0, 1, 2]

union

Returns union of two sets.

	signature:	left.union(right)

	callAs:	method

	receiverArg left:

		input set

	argType left:	set

	arg right:	input set

	argType right:	set

	returnType:	set

yaql> set(0, 1).union(set(1, 2))
[0, 1, 2]

values

Returns an iterator over the dictionary values.

	signature:	dict.values()

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	dictionary

	returnType:	iterator

yaql> {"a" => 1, "b" => 2}.values()
[1, 2]

Querying data

Queries module.

accumulate

Applies selector of two arguments cumulatively to the items of collection
from begin to end, so as to accumulate the collection to a list of
intermediate values.

	signature:	collection.accumulate(selector, seed => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg selector:	function of two arguments to be applied on every next
pair of collection

	argType selector:

		lambda

	arg seed:	value to use as the first for accumulating. noValue by default

	argType seed:	collection elements type

	returnType:	list

yaql> [1, 2, 3].accumulate($1+$2)
[1, 3, 6]
yaql> [1, 2, 3].accumulate($1+$2, 100)
[100, 101, 103, 106]
yaql> [].accumulate($1+$2,1)
[1]

aggregate

Applies selector of two arguments cumulatively: to the first two elements
of collection, then to the result of the previous selector applying and
to the third element, and so on. Returns the result of last selector
applying.

	signature:	collection.aggregate(selector, seed => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg selector:	function of two arguments to be applied on every next
pair of collection

	argType selector:

		lambda

	arg seed:	if specified, it is used as start value for accumulating and
becomes a default when the collection is empty. NoValue by default

	argType seed:	collection elements type

	returnType:	collection elements type

yaql> [a,a,b,a,a].aggregate($1 + $2)
"aabaa"
yaql> [].aggregate($1 + $2, 1)
1

all

Returns true if all the elements of a collection evaluate to true.
If a predicate is specified, returns true if the predicate is true for all
elements in the collection.

	signature:	collection.all(predicate => null)

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	lambda function to apply to every collection value. null
by default, which means evaluating collections elements to boolean
with no predicate

	argType predicate:

		lambda

	returnType:	boolean

yaql> [1, [], ''].all()
false
yaql> [1, [0], 'a'].all()
true

any

Returns true if a collection is not empty. If a predicate is specified,
determines whether any element of the collection satisfies the predicate.

	signature:	collection.any(predicate => null)

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	lambda function to apply to every collection value. null
by default, which means checking collection length

	argType predicate:

		lambda

	returnType:	boolean

yaql> [[], 0, ''].any()
true
yaql> [[], 0, ''].any(predicate => $)
false

append

Returns a collection with appended args.

	signature:	collection.append([args])

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg [args]:	arguments to be appended to input collection

	argType [args]:	chain of any types

	returnType:	iterable

yaql> [1, 2, 3].append(4, 5)
[1, 2, 3, 4, 5]

concat

Returns an iterator that consequently iterates over elements of the first
collection, then proceeds to the next collection and so on.

	signature:	collection.concat([args])

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg [args]:	iterables to be concatenated with input collection

	argType [args]:	chain of iterable

	returnType:	iterable

yaql> [1].concat([2, 3], [4, 5])
[1, 2, 3, 4, 5]

count

Returns the size of the collection.

	signature:	collection.count()

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	returnType:	integer

yaql> [1, 2].count()
2

cycle

Makes an iterator returning elements from the collection as if it cycled.

	signature:	collection.cycle()

	callAs:	method

	receiverArg collection:

		value to be cycled

	argType collection:

		iterable

	returnType:	iterator

yaql> [1, 2].cycle().take(5)
[1, 2, 1, 2, 1]

defaultIfEmpty

Returns default value if collection is empty.

	signature:	collection.defaultIfEmpty(default)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg default:	value to be returned if collection size is 0

	argType default:

		iterable

	returnType:	iterable

yaql> [].defaultIfEmpty([1, 2])
[1, 2]

distinct

Returns only unique members of the collection. If keySelector is
specified, it is used to determine uniqueness.

	signature:	collection.distinct(keySelector => null)

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg keySelector:

		specifies a function of one argument that is used
to extract a comparison key from each collection element. The default
value is null, which means elements are compared directly

	argType keySelector:

		lambda

	returnType:	iterable

yaql> [1, 2, 3, 1].distinct()
[1, 2, 3]
yaql> [{'a'=> 1}, {'b'=> 2}, {'a'=> 1}].distinct()
[{"a": 1}, {"b": 2}]
yaql> [['a', 1], ['b', 2], ['c', 1], ['a', 3]].distinct($[1])
[['a', 1], ['b', 2], ['a', 3]]

enumerate

Returns an iterator over pairs (index, value), obtained from iterating over
a collection.

	signature:	collection.enumerate(start => 0)

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg start:	a value to start with numerating first element of each pair,
0 is a default value

	argType start:	integer

	returnType:	list

yaql> ['a', 'b', 'c'].enumerate()
[[0, 'a'], [1, 'b'], [2, 'c']]
yaql> ['a', 'b', 'c'].enumerate(2)
[[2, 'a'], [3, 'b'], [4, 'c']]

first

Returns the first element of the collection. If the collection is empty,
returns the default value or raises StopIteration if default is not
specified.

	signature:	collection.first(default => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg default:	value to be returned if collection is empty. NoValue by
default

	argType default:

		any

	returnType:	type of collection’s elements or default value type

yaql> [3, 1, 2].first()
3

generate

Returns iterator to values beginning from initial value with every next
value produced with producer applied to every previous value, while
predicate is true.
Represents traversal over the list where each next element is obtained
by the lambda result from the previous element.

	signature:	generate(initial, predicate, producer, selector => null,
decycle => false)

	callAs:	function

	arg initial:	value to start from

	argType initial:

		any type

	arg predicate:	function of one argument to be applied on every new
value. Stops generating if return value is false

	argType predicate:

		lambda

	arg producer:	function of one argument to produce the next value

	argType producer:

		lambda

	arg selector:	function of one argument to store every element in the
resulted list. none by default which means to store producer result

	argType selector:

		lambda

	arg decycle:	return only distinct values if true, false by default

	argType decycle:

		boolean

	returnType:	list

yaql> generate(0, $ < 10, $ + 2)
[0, 2, 4, 6, 8]
yaql> generate(1, $ < 10, $ + 2, $ * 1000)
[1000, 3000, 5000, 7000, 9000]

generateMany

Returns iterator to values beginning from initial queue of values with
every next value produced with producer applied to top of queue, while
predicate is true.
Represents tree traversal, where producer is used to get child nodes.

	signature:	generateMany(initial, producer, selector => null,
decycle => false, depthFirst => false)

	callAs:	function

	arg initial:	value to start from

	argType initial:

		any type

	arg producer:	function to produce the next value for queue

	argType producer:

		lambda

	arg selector:	function of one argument to store every element in the
resulted list. none by default which means to store producer result

	argType selector:

		lambda

	arg decycle:	return only distinct values if true, false by default

	argType decycle:

		boolean

	arg depthFirst:	if true puts produced elements to the start of queue,
false by default

	argType depthFirst:

		boolean

	returnType:	list

yaql> generateMany("1", {"1" => ["2", "3"],
 "2"=>["4"], "3"=>["5"]
 }.get($, []))
["1", "2", "3", "4", "5"]

groupBy

Returns a collection grouped by keySelector with applied valueSelector as
values. Returns a list of pairs where the first value is a result value
of keySelector and the second is a list of values which have common
keySelector return value.

	signature:	collection.groupBy(keySelector, valueSelector => null,
aggregator => null)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg keySelector:

		function to be applied to every collection element.
Values are grouped by return value of this function

	argType keySelector:

		lambda

	arg valueSelector:

		function to be applied to every collection element to
put it under appropriate group. null by default, which means return
element itself

	argType valueSelector:

		lambda

	arg aggregator:	function to aggregate value within each group. null by
default, which means no function to be evaluated on groups

	argType aggregator:

		lambda

	returnType:	list

yaql> [["a", 1], ["b", 2], ["c", 1], ["d", 2]].groupBy($[1], $[0])
[[1, ["a", "c"]], [2, ["b", "d"]]]
yaql> [["a", 1], ["b", 2], ["c", 1]].groupBy($[1], $[0], $.sum())
[[1, "ac"], [2, "b"]]

indexOf

Returns the index in the collection of the first item which value is item.
-1 is a return value if there is no such item

	signature:	collection.indexOf(item)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg item:	value to find in collection

	argType item:	any

	returnType:	integer

yaql> [1, 2, 3, 2].indexOf(2)
1
yaql> [1, 2, 3, 2].indexOf(102)
-1

indexWhere

Returns the index in the collection of the first item which value
satisfies the predicate. -1 is a return value if there is no such item

	signature:	collection.indexWhere(predicate)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	function of one argument to apply on every value

	argType predicate:

		lambda

	returnType:	integer

yaql> [1, 2, 3, 2].indexWhere($ > 2)
2
yaql> [1, 2, 3, 2].indexWhere($ > 3)
-1

isIterable

Returns true if value is iterable, false otherwise.

	signature:	isIterable(value)

	callAs:	function

	arg value:	value to be checked

	argType value:	any

	returnType:	boolean

yaql> isIterable([])
true
yaql> isIterable(set(1,2))
true
yaql> isIterable("foo")
false
yaql> isIterable({"a" => 1})
false

join

Returns list of selector applied to those combinations of collection1 and
collection2 elements, for which predicate is true.

	signature:	collection1.join(collection2, predicate, selector)

	callAs:	method

	receiverArg collection1:

		input collection

	argType collection1:

		iterable

	arg collection2:

		other input collection

	argType collection2:

		iterable

	arg predicate:	function of two arguments to apply to every
(collection1, collection2) pair, if returned value is true the pair is
passed to selector

	argType predicate:

		lambda

	arg selector:	function of two arguments to apply to every
(collection1, collection2) pair, for which predicate returned true

	argType selector:

		lambda

	returnType:	iterable

yaql> [1,2,3,4].join([2,5,6], $1 > $2, [$1, $2])
[[3, 2], [4, 2]]

last

Returns the last element of the collection. If the collection is empty,
returns the default value or raises StopIteration if default is not
specified.

	signature:	collection.last(default => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg default:	value to be returned if collection is empty. NoValue is
default value.

	argType default:

		any

	returnType:	type of collection’s elements or default value type

yaql> [0, 1, 2].last()
2

lastIndexOf

Returns the index in the collection of the last item which value is item.
-1 is a return value if there is no such item

	signature:	collection.lastIndexOf(item)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg item:	value to find in collection

	argType item:	any

	returnType:	integer

yaql> [1, 2, 3, 2].lastIndexOf(2)
3

lastIndexWhere

Returns the index in the collection of the last item which value
satisfies the predicate. -1 is a return value if there is no such item

	signature:	collection.lastIndexWhere(predicate)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	function of one argument to apply on every value

	argType predicate:

		lambda

	returnType:	integer

yaql> [1, 2, 3, 2].lastIndexWhere($ = 2)
3

len

Returns the size of the collection.

	signature:	collection.len()

	callAs:	function or method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	returnType:	integer

yaql> [1, 2].len()
2

limit

Returns the first count elements of a collection.

	signature:	collection.limit(count)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg count:	how many first elements of a collection to return. If count is
greater or equal to collection size, return value is input collection

	argType count:	integer

	returnType:	iterable

yaql> [1, 2, 3, 4, 5].limit(4)
[1, 2, 3, 4]

max

Returns max value in collection. Considers initial if specified.

	signature:	collection.max(initial => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg initial:	value to start with. NoValue by default

	argType initial:

		collection’s elements type

	returnType:	collection’s elements type

yaql> [3, 1, 2].max()
3

memorize

Returns an iterator over collection and memorizes already iterated values.
This function can be used for iterating over collection several times
as it remembers elements, and when given collection (iterator) is too
large to be unwrapped at once.

	signature:	collection.memorize()

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	returnType:	iterator to collection

yaql> let(range(4)) -> $.sum() + $.len()
6
yaql> let(range(4).memorize()) -> $.sum() + $.len()
10

mergeWith

Performs a deep merge of two dictionaries.

	signature:	dict.mergeWith(another, listMerger => null,
itemMerger => null, maxLevels => null)

	callAs:	method

	receiverArg dict:

		input dictionary

	argType dict:	mapping

	arg another:	dictionary to merge with

	argType another:

		mapping

	arg listMerger:	function to be applied while merging two lists. null is a
default which means listMerger to be distinct(lst1 + lst2)

	argType listMerger:

		lambda

	arg itemMerger:	function to be applied while merging two items. null is a
default, which means itemMerger to be a second item for every pair.

	argType itemMerger:

		lambda

	arg maxLevels:	number which describes how deeply merge dicts. 0 by
default, which means going throughout them

	argType maxLevels:

		int

	returnType:	mapping

yaql> {'a'=> 1, 'b'=> 2, 'c'=> [1, 2]}.mergeWith({'d'=> 5, 'b'=> 3,
 'c'=> [2, 3]})
{"a": 1, "c": [1, 2, 3], "b": 3, "d": 5}
yaql> {'a'=> 1, 'b'=> 2, 'c'=> [1, 2]}.mergeWith({'d'=> 5, 'b'=> 3,
 'c'=> [2, 3]},
 $1+$2)
{"a": 1, "c": [1, 2, 2, 3], "b": 3, "d": 5}
yaql> {'a'=> 1, 'b'=> 2, 'c'=> [1, 2]}.mergeWith({'d'=> 5, 'b'=> 3,
 'c'=> [2, 3]},
 $1+$2, $1)
{"a": 1, "c": [1, 2, 2, 3], "b": 2, "d": 5}
yaql> {'a'=> 1, 'b'=> 2, 'c'=> [1, 2]}.mergeWith({'d'=> 5, 'b'=> 3,
 'c'=> [2, 3]},
 maxLevels => 1)
{"a": 1, "c": [2, 3], "b": 3, "d": 5}

min

Returns min value in collection. Considers initial if specified.

	signature:	collection.min(initial => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg initial:	value to start with. NoValue by default

	argType initial:

		collection’s elements type

	returnType:	collection’s elements type

yaql> [3, 1, 2].min()
1

operator .

Retrieves the value of an attribute for each element in a collection and
returns a list of results.

	signature:	collection.attribute

	callAs:	operator

	arg collection:	input collection

	argType collection:

		iterable

	arg attribute:	attribute to get on every collection item

	argType attribute:

		keyword

	returnType:	list

yaql> [{"a" => 1}, {"a" => 2, "b" => 3}].a
[1, 2]

orderBy

Returns an iterator over collection elements sorted in ascending order.
Selector is applied to each element of the collection to extract
sorting key.

	signature:	collection.orderBy(selector)

	callAs:	method

	receiverArg collection:

		collection to be ordered

	argType collection:

		iterable

	arg selector:	specifies a function of one argument that is used to
extract a comparison key from each element

	argType selector:

		lambda

	returnType:	iterator

yaql> [[1, 'c'], [2, 'b'], [3, 'c'], [0, 'd']].orderBy($[1])
[[2, 'b'], [1, 'c'], [3, 'c'], [0, 'd']]

orderByDescending

Returns an iterator over collection elements sorted in descending order.
Selector is applied to each element of the collection to extract
sorting key.

	signature:	collection.orderByDescending(selector)

	callAs:	method

	receiverArg collection:

		collection to be ordered

	argType collection:

		iterable

	arg selector:	specifies a function of one argument that is used to
extract a comparison key from each element

	argType selector:

		lambda

	returnType:	iterator

yaql> [4, 2, 3, 1].orderByDescending($)
[4, 3, 2, 1]

range

	Returns an iterator over values from 0 up to stop, not including
stop, i.e. [0, stop).

	signature:	range(stop)

	callAs:	function

	arg stop:	right bound for generated list numbers

	argType stop:	integer

	returnType:	iterator

yaql> range(3)
[0, 1, 2]

	Returns an iterator over values from start up to stop, not including stop,
i.e [start, stop) with step 1 if not specified.

	signature:	range(start, stop, step => 1)

	callAs:	function

	arg start:	left bound for generated list numbers

	argType start:	integer

	arg stop:	right bound for generated list numbers

	argType stop:	integer

	arg step:	the next element in list is equal to previous + step. 1 is value
by default

	argType step:	integer

	returnType:	iterator

yaql> range(1, 4)
[1, 2, 3]
yaql> range(4, 1, -1)
[4, 3, 2]

repeat

Returns collection with value repeated.

	signature:	value.repeat(times => -1)

	callAs:	method

	receiverArg value:

		value to be repeated

	argType value:	any

	arg times:	how many times repeat value. -1 by default, which means that
returned value will be an iterator to the endless sequence of values

	argType times:	int

	returnType:	iterable

yaql> 1.repeat(2)
[1, 1]
yaql> 1.repeat().take(3)
[1, 1, 1]

reverse

Returns reversed collection, evaluated to list.

	signature:	collection.reverse()

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	returnType:	list

yaql> [1, 2, 3, 4].reverse()
[4, 3, 2, 1]

select

Applies the selector to every item of the collection and returns a list of
results.

	signature:	collection.select(selector)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg selector:	expression for processing elements

	argType selector:

		lambda

	returnType:	iterable

yaql> [1, 2, 3, 4, 5].select($ * $)
[1, 4, 9, 16, 25]
yaql> [{'a'=> 2}, {'a'=> 4}].select($.a)
[2, 4]

selectMany

Applies a selector to each element of the collection and returns an
iterator over results. If the selector returns an iterable object,
iterates over its elements instead of itself.

	signature:	collection.selectMany(selector)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg selector:	function to be applied to every collection element

	argType selector:

		lambda

	returnType:	iterator

yaql> [0, 1, 2].selectMany($ + 2)
[2, 3, 4]
yaql> [0, [1, 2], 3].selectMany($ * 2)
[0, 1, 2, 1, 2, 6]

sequence

Returns an iterator to the sequence beginning from start with step.

	signature:	sequence(start => 0, step => 1)

	callAs:	function

	arg start:	start value of the sequence. 0 is value by default

	argType start:	integer

	arg step:	the next element is equal to previous + step. 1 is value by
default

	argType step:	integer

	returnType:	iterator

yaql> sequence().take(5)
[0, 1, 2, 3, 4]

single

Checks that collection has only one element and returns it. If the
collection is empty or has more than one element, raises StopIteration.

	signature:	collection.single()

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	returnType:	type of collection’s elements

yaql> ["abc"].single()
"abc"
yaql> [1, 2].single()
Execution exception: Collection contains more than one item

skip

Returns a collection without first count elements.

	signature:	collection.skip(count)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg count:	how many elements to skip. If count is greater or equal to
collection size, return value is empty list

	argType count:	integer

	returnType:	iterable

yaql> [1, 2, 3, 4, 5].skip(2)
[3, 4, 5]

skipWhile

Skips elements from the collection as long as the predicate is true.
Then returns an iterator to collection of remaining elements

	signature:	collection.skipWhile(predicate)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	function of one argument to apply to every collection value

	argType predicate:

		lambda

	returnType:	iterator

yaql> [1, 2, 3, 4, 5].skipWhile($ < 3)
[3, 4, 5]

slice

Returns collection divided into list of collections with max size of
new parts equal to length.

	signature:	collection.slice(length)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg length:	max length of new collections

	argType length:	integer

	returnType:	list

yaql> range(1,6).slice(2)
[[1, 2], [3, 4], [5]]

sliceWhere

Splits collection into lists. Within every list predicate evaluated
on its items returns the same value while predicate evaluated on the
items of the adjacent lists returns different values. Returns an iterator
to lists.

	signature:	collection.sliceWhere(predicate)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	function of one argument to be applied on every
element. Elements for which predicate returns true are delimiters for
new list and are present in new collection as separate collections

	argType predicate:

		lambda

	returnType:	iterator

yaql> [1, 2, 3, 4, 5, 6, 7].sliceWhere($ mod 3 = 0)
[[1, 2], [3], [4, 5], [6], [7]]

splitAt

Splits collection into two lists by index.

	signature:	collection.splitAt(index)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg index:	the index of collection to be delimiter for splitting

	argType index:	integer

	returnType:	list

yaql> [1, 2, 3, 4].splitAt(1)
[[1], [2, 3, 4]]
yaql> [1, 2, 3, 4].splitAt(0)
[[], [1, 2, 3, 4]]

splitWhere

Returns collection divided into list of collections where delimiters are
values for which predicate returns true. Delimiters are deleted from
result.

	signature:	collection.splitWhere(predicate)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	function of one argument to be applied on every
element. Elements for which predicate returns true are delimiters for
new list

	argType predicate:

		lambda

	returnType:	list

yaql> [1, 2, 3, 4, 5, 6, 7].splitWhere($ mod 3 = 0)
[[1, 2], [4, 5], [7]]

sum

Returns the sum of values in a collection starting from initial if
specified.

	signature:	collection.sum(initial => NoValue)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg initial:	value to start sum with. NoValue by default

	argType initial:

		collection’s elements type

	returnType:	collection’s elements type

yaql> [3, 1, 2].sum()
6
yaql> ['a', 'b'].sum('c')
"cab"

takeWhile

Returns elements from the collection as long as the predicate is true.

	signature:	collection.takeWhile(predicate)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg predicate:	function of one argument to apply to every
collection value

	argType predicate:

		lambda

	returnType:	iterable

yaql> [1, 2, 3, 4, 5].takeWhile($ < 4)
[1, 2, 3]

thenBy

To be used with orderBy or orderByDescending. Uses selector to extract
secondary sort key (ascending) from the elements of the collection and
adds it to the iterator.

	signature:	collection.thenBy(selector)

	callAs:	method

	receiverArg collection:

		collection to be ordered

	argType collection:

		iterable

	arg selector:	specifies a function of one argument that is used to
extract a comparison key from each element

	argType selector:

		lambda

	returnType:	iterator

yaql> [[3, 'c'], [2, 'b'], [1, 'c']].orderBy($[1]).thenBy($[0])
[[2, 'b'], [1, 'c'], [3, 'c']]

thenByDescending

To be used with orderBy or orderByDescending. Uses selector to extract
secondary sort key (descending) from the elements of the collection and
adds it to the iterator.

	signature:	collection.thenByDescending(selector)

	callAs:	method

	receiverArg collection:

		collection to be ordered

	argType collection:

		iterable

	arg selector:	specifies a function of one argument that is used to
extract a comparison key from each element

	argType selector:

		lambda

	returnType:	iterable

yaql> [[3,'c'], [2,'b'], [1,'c']].orderBy($[1]).thenByDescending($[0])
[[2, 'b'], [3, 'c'], [1, 'c']]

where

Returns only those collection elements, for which the filtering query
(predicate) is true.

	signature:	collection.where(predicate)

	callAs:	method

	receiverArg collection:

		collection to be filtered

	argType collection:

		iterable

	arg predicate:	filter for collection elements

	argType predicate:

		lambda

	returnType:	iterable

yaql> [1, 2, 3, 4, 5].where($ > 3)
[4, 5]

zip

Returns an iterator over collections, where the n-th iterable contains the
n-th element from each of collections. Stops iterating as soon as any of
the collections is exhausted.

	signature:	collection.zip([args])

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg [args]:	collections for zipping with input collection

	argType [args]:	chain of collections

	returnType:	iterator

yaql> [1, 2, 3].zip([4, 5], [6, 7])
[[1, 4, 6], [2, 5, 7]]

zipLongest

Returns an iterator over collections, where the n-th iterable contains
the n-th element from each of collections. Iterates until all the
collections are not exhausted and fills lacking values with default value,
which is null by default.

	signature:	collection.zipLongest([args], default => null)

	callAs:	method

	receiverArg collection:

		input collection

	argType collection:

		iterable

	arg [args]:	collections for zipping with input collection

	argType [args]:	chain of collections

	arg default:	default value for lacking values, can be passed only
as keyword argument. null by default

	argType default:

		any type

	returnType:	iterator

yaql> [1, 2, 3].zipLongest([4, 5])
[[1, 4], [2, 5], [3, null]]
yaql> [1, 2, 3].zipLongest([4, 5], default => 100)
[[1, 4], [2, 5], [3, 100]]

Branching functions

The module describes branching functions such as switch, case, and others.

coalesce

Returns the first predicate which evaluates to non-null value. Returns null
if no arguments are provided or if all of them are null.

	signature:	coalesce([args])

	callAs:	function

	arg [args]:	input arguments

	argType [args]:	chain of any types

	returnType:	any

yaql> coalesce(null)
null
yaql> coalesce(null, [1, 2, 3][0], "abc")
1
yaql> coalesce(null, false, 1)
false

examine

Evaluates predicates one by one and casts the evaluation results to
boolean. Returns an iterator to collection of casted results. The actual
evaluation is done lazily as the iterator advances, not during the
function call.

	signature:	examine([args])

	callAs:	function

	arg [args]:	predicates to be evaluated

	argType [args]:	chain of predicates functions

	returnType:	iterator

yaql> examine("ab" > "abc", "ab" <= "abc", "ab" < "abc")
[false, true, true]

selectAllCases

Evaluates input predicates and returns an iterator to collection of
zero-based indexes of predicates which were evaluated to true. The actual
evaluation is done lazily as the iterator advances, not during the
function call.

	signature:	selectAllCases([args])

	callAs:	function

	arg [args]:	predicates to check for true

	argType [args]:	chain of predicates

	returnType:	iterator

yaql> selectAllCases("ab" > "abc", "ab" <= "abc", "ab" < "abc")
[1, 2]

selectCase

Returns a zero-based index of the first predicate evaluated to true. If
there is no such predicate, returns the count of arguments. All the
predicates after the first one which was evaluated to true remain
unevaluated.

	signature:	selectCase([args])

	callAs:	function

	arg [args]:	predicates to check for true

	argType [args]:	chain of predicates

	returnType:	integer

yaql> selectCase("ab" > "abc", "ab" >= "abc", "ab" < "abc")
2

switch

Returns the value of the first argument for which the key evaluates to
true, null if there is no such arg.

	signature:	switch([args])

	callAs:	function

	arg [args]:	mappings with keys to check for true and appropriate values

	argType [args]:	chain of mapping

	returnType:	any (types of values of args)

yaql> switch("ab" > "abc" => 1, "ab" >= "abc" => 2, "ab" < "abc" => 3)
3

switchCase

Returns evaluated case-th argument. If case is less than 0 or greater
than the amount of predicates, returns evaluated last argument.
Returns null if no args are provided.

	signature:	case.switchCase([args])

	callAs:	method

	recieverArg case:

		index of predicate to be evaluated

	argType case:	integer

	arg [args]:	input predicates

	argType [args]:	chain of any types

	returnType:	any

yaql> 1.switchCase('a', 1 + 1, [])
2
yaql> 2.switchCase('a', 1 + 1, [])
[]
yaql> 3.switchCase('a', 1 + 1, [])
[]
yaql> let(1) -> selectCase($ < 0, $ = 0).switchCase("less than 0",
 "equal to 0",
 "greater than 0")
"greater than 0"

String manipulations

The module describes which operations can be done with strings in YAQL.

characters

Returns a list of all distinct items of specified types.

	signature:	characters(digits => false, hexdigits => false,
asciiLowercase => false, asciiUppercase => false,
asciiLetters => false, letters => false,
octdigits => false, punctuation => false,
printable => false, lowercase => false,
uppercase => false, whitespace => false)

	callAs:	function

	arg digits:	include digits in output list if true, false by default

	argType digits:	boolean

	arg hexdigits:	include hexademical digits in output list if true, false
by default

	argType hexdigits:

		boolean

	arg asciiLowercase:

		include ASCII lowercase letters in output list if
true, false by default

	argType asciiLowercase:

		boolean

	arg asciiUppercase:

		include ASCII uppercase letters in output list if
true, false by default

	argType asciiUppercase:

		boolean

	arg asciiLetters:

		include both ASCII lowercase and uppercase letters
in output list if true, false by default

	argType asciiLetters:

		boolean

	arg letters:	include both lowercase and uppercase letters in output list
if true, false by default

	argType letters:

		boolean

	arg octdigits:	include digits from 0 to 7 in output list if true, false
by default

	argType octdigits:

		boolean

	arg punctuation:

		include ASCII characters, which are considered
punctuation, in output list if true, false by default

	argType punctuation:

		boolean

	arg printable:	include digits, letters, punctuation, and whitespace in
output list if true, false by default

	argType printable:

		boolean

	arg lowercase:	include lowercase letters in output list if true, false
by default

	argType lowercase:

		boolean

	arg uppercase:	include uppercase letters in output list if true, false
by default

	argType uppercase:

		boolean

	arg whitespace:	include all characters that are considered whitespace
in output list if true, false by default

	argType whitespace:

		boolean

	returnType:	list

yaql> characters(digits => true)
["1", "0", "3", "2", "5", "4", "7", "6", "9", "8"]

concat

Returns concatenated args.

	signature:	concat([args])

	callAs:	function

	arg [args]:	values to be joined

	argType [args]:	string

	returnType:	string

yaql> concat("abc", "de", "f")
"abcdef"

endsWith

Returns true if a string ends with any of given args.

	signature:	string.endsWith([args])

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg [args]:	chain of strings to check input string with

	argType [args]:	strings

	returnType:	boolean

yaql> "abcd".endsWith("cd", "xx")
true
yaql> "abcd".endsWith("yy", "xx", "zz")
false

format

Returns a string formatted with positional and keyword arguments.

	signature:	string.format([args], {kwargs})

	callAs:	function or method

	receiverArg string:

		input string for formatting. Can be passed only as
first positional argument if used as a function. Can contain literal
text or replacement fields marked by braces {}. Every replacement field
should contain either the numeric index of a positional argument or the
name of a keyword argument

	argType string:	string

	arg [args]:	values for replacements for numeric markers

	argType [args]:	chain of strings

	arg {kwargs}:	values for keyword replacements

	argType {kwargs}:

		chain of key-value arguments, where values are strings

	returnValue:	string

yaql> "abc{0}ab{1}abc".format(" ", ",")
"abc ab,abc"
yaql> "abc{foo}ab{bar}abc".format(foo => " ", bar => ",")
"abc ab,abc"
yaql> format("abc{0}ab{foo}abc", ' ', foo => ",")
"abc ab,abc"

hex

Returns a string with hexadecimal representation of num.

	signature:	hex(num)

	callAs:	function

	arg num:	input number to be converted to hexademical

	argType num:	number

	returnType:	string

yaql> hex(256)
"0x100"

indexOf

	Returns an index of first occurrence sub in string beginning from start.
-1 is a return value if there is no any occurrence.

	signature:	string.indexOf(sub, start => 0)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg sub:	substring to find in string

	argType sub:	string

	arg start:	index to start search with, 0 by default

	argType start:	integer

	returnType:	integer

yaql> "cabcdab".indexOf("ab")
1
yaql> "cabcdab".indexOf("ab", 2)
5
yaql> "cabcdab".indexOf("ab", 6)
-1

	Returns an index of first occurrence sub in string beginning from start
ending with start+length.
-1 is a return value if there is no any occurrence.

	signature:	string.indexOf(sub, start, length)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg sub:	substring to find in string

	argType sub:	string

	arg start:	index to start search with, 0 by default

	argType start:	integer

	arg length:	length of string to find substring in

	argType length:	integer

	returnType:	integer

yaql> "cabcdab".indexOf("bc", 2, 2)
2

isEmpty

Returns true if the string with removed leading and trailing chars is
empty.

	signature:	string.isEmpty(trimSpaces => true, chars => null)

	callAs:	function or method

	receiverArg string:

		value to be checked for emptiness after trim

	argType string:	string

	arg trimSpaces:	true by default, which means string to be trimmed with
chars. false means checking whether input string is empty

	argType trimSpaces:

		boolean

	arg chars:	symbols for trimming. null by default, which means trim is
done with whitespace characters

	argType chars:	string

	returnType:	boolean

yaql> "abaab".isEmpty(chars=>"ab")
true
yaql> "aba".isEmpty(chars=>"a")
false

isString

Returns true if arg is a string.

	signature:	isString(arg)

	callAs:	function

	arg arg:	input value

	argType arg:	any

	returnType:	boolean

yaql> isString("ab")
true
yaql> isString(1)
false

join

	Returns a string with sequence elements joined by the separator.

	signature:	sequence.join(separator)

	callAs:	method

	receiverArg sequence:

		chain of values to be joined

	argType sequence:

		sequence of strings

	arg separator:	value to be placed between joined pairs

	argType separator:

		string

	returnType:	string

yaql> ["abc", "de", "f"].join("")
"abcdef"
yaql> ["abc", "de", "f"].join("|")
"abc|de|f"

	Returns a string with sequence elements joined by the separator.

	signature:	separator.join(sequence)

	callAs:	method

	receiverArg separator:

		value to be placed between joined pairs

	argType separator:

		string

	arg sequence:	chain of values to be joined

	argType sequence:

		sequence of strings

	returnType:	string

yaql> "|".join(["abc", "de", "f"])
"abc|de|f"

lastIndexOf

	Returns an index of last occurrence sub in string beginning from start.
-1 is a return value if there is no any occurrence.

	signature:	string.lastIndexOf(sub, start => 0)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg sub:	substring to find in string

	argType sub:	string

	arg start:	index to start search with, 0 by default

	argType start:	integer

	returnType:	integer

yaql> "cabcdab".lastIndexOf("ab")
5

	Returns an index of last occurrence sub in string beginning from start
ending with start+length.
-1 is a return value if there is no any occurrence.

	signature:	string.lastIndexOf(sub, start, length)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg sub:	substring to find in string

	argType sub:	string

	arg start:	index to start search with, 0 by default

	argType start:	integer

	arg length:	length of string to find substring in

	argType length:	integer

	returnType:	integer

yaql> "cabcdbc".lastIndexOf("bc", 2, 5)
5

len

Returns size of the string.

	signature:	string.len()

	callAs:	function or method

	receiverArg string:

		input string

	argType string:	string

	returnType:	integer

yaql> "abc".len()
3

norm

Returns a string with the leading and trailing chars removed.
If the resulting string is empty, returns null.

	signature:	string.norm(chars => null)

	callAs:	function or method

	receiverArg string:

		value to be cut with specified chars

	argType string:	string

	arg chars:	symbols to be removed from the start and the end of input
string. null by default, which means norm is done with whitespace
characters

	argType chars:	string

	returnType:	string

yaql> " abcd ".norm()
"abcd"
yaql> "aaaa".norm("a")
null

operator *

	Returns string repeated count times.

	signature:	left * right

	callAs:	operator

	arg left:	left operand, how many times repeat input string

	argType left:	integer

	arg right:	right operator

	argType right:	string

	returnType:	string

yaql> 2 * "ab"
"abab"

	Returns string repeated count times.

	signature:	left * right

	callAs:	operator

	arg left:	left operand

	argType left:	string

	arg right:	right operator, how many times repeat input string

	argType right:	integer

	returnType:	string

yaql> "ab" * 2
"abab"

operator <

Returns true if the left operand is strictly less than the right, ordering
lexicographically, otherwise false.

	signature:	left < right

	callAs:	operator

	arg left:	left operand

	argType left:	string

	arg right:	right operand

	argType right:	string

	returnType:	boolean

yaql> "ab" < "abc"
true
yaql> "abb" < "abc"
true
yaql> "abc" < "abc"
false

operator <=

Returns true if the left operand is less or equal to the right, ordering
lexicographically, otherwise false.

	signature:	left <= right

	callAs:	operator

	arg left:	left operand

	argType left:	string

	arg right:	right operand

	argType right:	string

	returnType:	boolean

yaql> "ab" <= "abc"
true
yaql> "abc" <= "abc"
true

operator >

Returns true if the left operand is strictly greater than the right,
ordering lexicographically, otherwise false.

	signature:	left > right

	callAs:	operator

	arg left:	left operand

	argType left:	string

	arg right:	right operand

	argType right:	string

	returnType:	boolean

yaql> "abc" > "ab"
true
yaql> "abc" > "abb"
true
yaql> "abc" > "abc"
false

operator >=

Returns true if the left operand is greater or equal to the right, ordering
lexicographically, otherwise false.

	signature:	left >= right

	callAs:	operator

	arg left:	left operand

	argType left:	string

	arg right:	right operand

	argType right:	string

	returnType:	boolean

yaql> "abc" >= "ab"
true
yaql> "abc" >= "abc"
true

operator in

Returns true if there is at least one occurrence of left string in right.

	signature:	left in right

	callAs:	operator

	arg left:	left operand, which occurrence is checked

	argType left:	string

	arg right:	right operand

	argType right:	string

	returnType:	boolean

yaql> "ab" in "abc"
true
yaql> "ab" in "acb"
false

replace

	Returns a string with first count occurrences of old replaced with new.

	signature:	string.replace(old, new, count => -1)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg old:	value to be replaced

	argType old:	string

	arg new:	replacement for old value

	argType new:	string

	arg count:	how many first replacements to do. -1 by default, which means
to do all replacements

	argType count:	integer

	returnType:	string

yaql> "abaab".replace("ab", "cd")
"cdacd"

	Returns a string with all occurrences of replacements’ keys replaced
with corresponding replacements’ values.
If count is specified, only the first count occurrences of every key
are replaced.

	signature:	string.replace(replacements, count => -1)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg replacements:

		dict of replacements in format {old => new ...}

	argType replacements:

		mapping

	arg count:	how many first occurrences of every key are replaced. -1 by
default, which means to do all replacements

	argType count:	integer

	returnType:	string

yaql> "abc ab abc".replace({abc => xx, ab => yy})
"xx yy xx"
yaql> "abc ab abc".replace({ab => yy, abc => xx})
"yyc yy yyc"
yaql> "abc ab abc".replace({ab => yy, abc => xx}, 1)
"yyc ab xx"

rightSplit

Returns a list of tokens in the string, using separator as the
delimiter. If maxSplits is given then at most maxSplits splits are done -
the rightmost ones.

	signature:	string.rightSplit(separator => null, maxSplits => -1)

	callAs:	method

	receiverArg string:

		value to be splitted

	argType string:	string

	arg separator:	delimiter for splitting. null by default, which means
splitting with whitespace characters

	argType separator:

		string

	arg maxSplits:	number of splits to be done - the rightmost ones.
-1 by default, which means all possible splits are done

	argType maxSplits:

		integer

	returnType:	list

yaql> "abc de f".rightSplit()
["abc", "de", "f"]
yaql> "abc de f".rightSplit(maxSplits => 1)
["abc de", "f"]

split

Returns a list of tokens in the string, using separator as the
delimiter.

	signature:	string.split(separator => null, maxSplits => -1)

	callAs:	method

	receiverArg string:

		value to be splitted

	argType string:	string

	arg separator:	delimiter for splitting. null by default, which means
splitting with whitespace characters

	argType separator:

		string

	arg maxSplits:	maximum number of splittings. -1 by default, which means
all possible splits are done

	argType maxSplits:

		integer

	returnType:	list

yaql> "abc de f".split()
["abc", "de", "f"]
yaql> "abc de f".split(maxSplits => 1)
["abc", "de f"]
yaql> "abcde".split("c")
["ab", "de"]

startsWith

Returns true if a string starts with any of given args.

	signature:	string.startsWith([args])

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg [args]:	chain of strings to check input string with

	argType [args]:	strings

	returnType:	boolean

yaql> "abcd".startsWith("ab", "xx")
true
yaql> "abcd".startsWith("yy", "xx", "zz")
false

str

Returns a string representation of the value.

	signature:	str(value)

	callAs:	function

	arg value:	value to be evaluated to string

	argType value:	any

	returnType:	string

yaql> str(["abc", "de"])
"(u'abc', u'd')"
yaql> str(123)
"123"

substring

Returns a substring beginning from start index ending with start+end index.

	signature:	string.substring(start, length => -1)

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	arg start:	index for substring to start with

	argType start:	integer

	arg length:	length of substring. -1 by default, which means end of
substring to be equal to the end of input string

	argType length:	integer

	returnType:	string

yaql> "abcd".substring(1)
"bcd"
yaql> "abcd".substring(1, 2)
"bc"

toCharArray

Converts a string to array of one character strings.

	signature:	string.toCharArray()

	callAs:	method

	receiverArg string:

		input string

	argType string:	string

	returnType:	list

yaql> "abc de".toCharArray()
["a", "b", "c", " ", "d", "e"]

toLower

Returns a string with all case-based characters lowercase.

	signature:	string.toLower()

	callAs:	method

	receiverArg string:

		value to lowercase

	argType string:	string

	returnType:	string

yaql> "AB1c".toLower()
"ab1c"

toUpper

Returns a string with all case-based characters uppercase.

	signature:	string.toUpper()

	callAs:	method

	receiverArg string:

		value to uppercase

	argType string:	string

	returnType:	string

yaql> "aB1c".toUpper()
"AB1C"

trim

Returns a string with the leading and trailing chars removed.

	signature:	string.trim(chars => null)

	callAs:	method

	receiverArg string:

		value to be trimmed

	argType string:	string

	arg chars:	symbols to be removed from input string. null by default,
which means trim is done with whitespace characters

	argType chars:	string

	returnType:	string

yaql> " abcd ".trim()
"abcd"
yaql> "aababa".trim("a")
"bab"

trimLeft

Returns a string with the leading chars removed.

	signature:	string.trimLeft(chars => null)

	callAs:	method

	receiverArg string:

		value to be trimmed

	argType string:	string

	arg chars:	symbols to be removed from start of input string. null by
default, which means trim is done with whitespace characters

	argType chars:	string

	returnType:	string

yaql> " abcd ".trimLeft()
"abcd "
yaql> "aababa".trimLeft("a")
"baba"

trimRight

Returns a string with the trailing chars removed.

	signature:	string.trimRight(chars => null)

	callAs:	method

	receiverArg string:

		value to be trimmed

	argType string:	string

	arg chars:	symbols to be removed from end of input string. null by
default, which means trim is done with whitespace characters

	argType chars:	string

	returnType:	string

yaql> " abcd ".trimRight()
" abcd"
yaql> "aababa".trimRight("a")
"aabab"

Math functions

The Math module describes implemented math operations on numbers.

abs

Returns the absolute value of a number.

	signature:	abs(op)

	callAs:	function

	arg op:	input value

	argType op:	number

	returnType:	number

yaql> abs(-2)
2

bitwiseAnd

Returns applied “bitwise and” to left and right integers.
Each bit of the output is 1 if the corresponding bit of left AND right
is 1, otherwise 0.

	signature:	bitwiseAnd(left, right)

	callAs:	function

	arg left:	left value

	argType left:	integer

	arg right:	right value

	argType right:	integer

	returnType:	integer

yaql> bitwiseAnd(6, 12)
4

bitwiseNot

Returns an integer where each bit is a reversed corresponding bit of arg.

	signature:	bitwiseNot(arg)

	callAs:	function

	arg arg:	input value

	argType arg:	integer

	returnType:	integer

yaql> bitwiseNot(6)
-7

bitwiseOr

Returns applied “bitwise or” to left and right numbers.
Each bit of the output is 1 if the corresponding bit of left OR right
is 1, otherwise 0.

	signature:	bitwiseOr(left, right)

	callAs:	function

	arg left:	left value

	argType left:	integer

	arg right:	right value

	argType right:	integer

	returnType:	integer

yaql> bitwiseOr(6, 12)
14

bitwiseXor

Returns applied “bitwise exclusive or” to left and right numbers.
Each bit of the output is equal to the sum of corresponding left and right
bits mod 2.

	signature:	bitwiseXor(left, right)

	callAs:	function

	arg left:	left value

	argType left:	integer

	arg right:	right value

	argType right:	integer

	returnType:	integer

yaql> bitwiseXor(6, 12)
10

float

Returns a floating number built from number, string or null value.

	signature:	float(value)

	callAs:	function

	arg value:	input value

	argType value:	number, string or null

	returnType:	float

yaql> float("2.2")
2.2
yaql> float(12)
12.0
yaql> float(null)
0.0

int

Returns an integer built from number, string or null value.

	signature:	int(value)

	callAs:	function

	arg value:	input value

	argType value:	number, string or null

	returnType:	integer

yaql> int("2")
2
yaql> int(12.999)
12
yaql> int(null)
0

isInteger

Returns true if value is an integer number, otherwise false.

	signature:	isInteger(value)

	callAs:	function

	arg value:	input value

	argType value:	any

	returnType:	boolean

yaql> isInteger(12.0)
false
yaql> isInteger(12)
true

isNumber

Returns true if value is an integer or floating number, otherwise false.

	signature:	isNumber(value)

	callAs:	function

	arg value:	input value

	argType value:	any

	returnType:	boolean

yaql> isNumber(12.0)
true
yaql> isNumber(12)
true

max

Returns max from a and b.

	signature:	max(a, b)

	callAs:	function

	arg a:	input value

	argType a:	number

	arg b:	input value

	argType b:	number

	returnType:	number

yaql> max(8, 2)
8

min

Returns min from a and b.

	signature:	min(a, b)

	callAs:	function

	arg a:	input value

	argType a:	number

	arg b:	input value

	argType b:	number

	returnType:	number

yaql> min(8, 2)
2

operator *

Returns left multiplied by right.

	signature:	left * right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType right:	number

	returnType:	number

yaql> 3 * 2.5
7.5

operator +

Returns the sum of left and right operands.

	signature:	left + right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType right:	number

	returnType:	number

yaql> 3 + 2
5

operator -

Returns the difference between left and right.

	signature:	left - right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType right:	number

	returnType:	number

yaql> 3 - 2
1

operator /

Returns left divided by right.

	signature:	left / right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType right:	number

	returnType:	number

yaql> 3 / 2
1
yaql> 3.0 / 2
1.5

operator <

Returns true if left is strictly less than right, false otherwise.

	signature:	left < right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType left:	number

	returnType:	boolean

yaql> 3 < 2
false

operator <=

Returns true if left is less or equal to right, false otherwise.

	signature:	left <= right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType left:	number

	returnType:	boolean

yaql> 3 <= 3
true

operator >

Returns true if left is strictly greater than right, false otherwise.

	signature:	left > right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType left:	number

	returnType:	boolean

yaql> 3 > 2
true

operator >=

Returns true if left is greater or equal to right, false otherwise.

	signature:	left >= right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType left:	number

	returnType:	boolean

yaql> 3 >= 3
true

operator mod

Returns left modulo right.

	signature:	left mod right

	callAs:	operator

	arg left:	left operand

	argType left:	number

	arg right:	right operand

	argType right:	number

	returnType:	number

yaql> 3 mod 2
1

operator unary +

Returns +op.

	signature:	+op

	callAs:	operator

	arg op:	operand

	argType op:	number

	returnType:	number

yaql> +2
2

operator unary -

Returns -op.

	signature:	-op

	callAs:	operator

	arg op:	operand

	argType op:	number

	returnType:	number

yaql> -2
-2

pow

Returns a to the power b modulo c.

	signature:	pow(a, b, c => null)

	callAs:	function

	arg a:	input value

	argType a:	number

	arg b:	power

	argType b:	number

	arg c:	modulo. null by default, which means no modulo is done after power.

	argType c:	integer

	returnType:	number

yaql> pow(3, 2)
9
yaql> pow(3, 2, 5)
4

random

	Returns the next random floating number from [0.0, 1.0).

	signature:	random()

	callAs:	function

	returnType:	float

yaql> random()
0.6039529924951869

	Returns the next random integer from [a, b].

	signature:	random(from, to)

	callAs:	function

	arg from:	left value for generating random number

	argType from:	integer

	arg to:	right value for generating random number

	argType to:	integer

	returnType:	integer

yaql> random(1, 2)
2
yaql> random(1, 2)
1

round

Returns a floating number rounded to ndigits after the decimal point.

	signature:	round(number, ndigits => 0)

	callAs:	function

	arg number:	input value

	argType number:	number

	arg ndigits:	with how many digits after decimal point to round.
0 by default

	argType ndigits:

		integer

	returnType:	number

yaql> round(12.52)
13
yaql> round(12.52, 1)
12.5

shiftBitsLeft

Shifts the bits of value left by the number of bits bitsNumber.

	signature:	shiftBitsLeft(value, bitsNumber)

	callAs:	function

	arg value:	given value

	argType value:	integer

	arg bitsNumber:	number of bits

	argType right:	integer

	returnType:	integer

yaql> shiftBitsLeft(8, 2)
32

shiftBitsRight

Shifts the bits of value right by the number of bits bitsNumber.

	signature:	shiftBitsRight(value, bitsNumber)

	callAs:	function

	arg value:	given value

	argType value:	integer

	arg bitsNumber:	number of bits

	argType right:	integer

	returnType:	integer

yaql> shiftBitsRight(8, 2)
2

sign

Returns 1 if num > 0; 0 if num = 0; -1 if num < 0.

	signature:	sign(num)

	callAs:	function

	arg num:	input value

	argType num:	number

	returnType:	integer (-1, 0 or 1)

yaql> sign(2)
1

Regex functions

The module contains functions for regular expressions.

escapeRegex

Returns string with all the characters except ASCII letters, numbers,
and ‘_’ escaped.

	signature:	escapeRegex(string)

	callAs:	function

	arg string:	string to backslash all non-alphanumerics

	argType string:	string

	returnType:	string

yaql> escapeRegex('a.')
"a\."

isRegex

Returns true if value is a regex object.

	signature:	isRegex(value)

	callAs:	function

	arg value:	string to backslash all non-alphanumerics

	argType value:	any

	returnType:	boolean

yaql> isRegex(regex("a.c"))
true
yaql> isRegex(regex("a.c").matches("abc"))
false

matches

	Returns true if string matches regexp.

	signature:	regexp.matches(string)

	callAs:	method

	receiverArg regexp:

		regex pattern

	argType regexp:	regex object

	arg string:	string to find match in

	argType string:	string

	returnType:	boolean

yaql> regex("a.c").matches("abc")
true

	Returns true if string matches regexp, false otherwise.

	signature:	string.matches(regexp)

	callAs:	method

	receiverArg string:

		string to find match in

	argType string:	string

	arg regexp:	regex pattern

	argType regexp:	regex object

	returnType:	boolean

yaql> "abc".matches("a.c")
true

operator !~

	Returns true if left doesn’t match right, false otherwise.

	signature:	left !~ right

	callAs:	operator

	arg left:	string to find match in

	argType left:	string

	arg right:	regex pattern

	argType right:	regex

	returnType:	boolean

yaql> "acb" !~ regex("a.c")
true
yaql> "abc" !~ regex("a.c")
false

	Returns true if left doesn’t match right, false otherwise.

	signature:	left !~ right

	callAs:	operator

	arg left:	string to find match in

	argType left:	string

	arg right:	regex pattern

	argType right:	regex object

	returnType:	boolean

yaql> "acb" !~ regex("a.c")
true
yaql> "abc" !~ regex("a.c")
false

operator =~

	Returns true if left matches right, false otherwise.

	signature:	left =~ right

	callAs:	operator

	arg left:	string to find match in

	argType left:	string

	arg right:	regex pattern

	argType right:	regex

	returnType:	boolean

yaql> "abc" =~ regex("a.c")
true

	Returns true if left matches right, false otherwise.

	signature:	left =~ right

	callAs:	operator

	arg left:	string to find match in

	argType left:	string

	arg right:	regex pattern

	argType right:	string

	returnType:	boolean

yaql> "abc" =~ "a.c"
true

regex

Returns regular expression object with provided flags. Can be used for
matching using matches method.

	signature:	regex(pattern,ignoreCase => false, multiLine => false,
dotAll => false)

	callAs:	function

	arg pattern:	regular expression pattern to be compiled to regex object

	argType pattern:

		string

	arg ignoreCase:	true makes performing case-insensitive matching.

	argType ignoreCase:

		boolean

	arg multiLine:	true makes character ‘^’ to match at the beginning of the
string and at the beginning of each line, the character ‘$’ to match
at the end of the string and at the end of each line. false means
‘^’ to match only at the beginning of the string, ‘$’ only at the end
of the string.

	argType multiLine:

		boolean

	arg dotAll:	true makes the ‘.’ special character to match any character
(including a newline). false makes ‘.’ to match anything except
a newline.

	argType dotAll:	boolean

	returnType:	regex object

yaql> regex("a.c").matches("abc")
true
yaql> regex("A.c").matches("abc")
false
yaql> regex("A.c", ignoreCase => true).matches("abc")
true

replace

	Returns the string obtained by replacing the leftmost non-overlapping
matches of regexp in string by the replacement repl, where the latter is
only string-type.

	signature:	regexp.replace(string, repl, count => 0)

	callAs:	method

	receiverArg regexp:

		regex pattern

	argType regexp:	regex object

	arg string:	string to make replace in

	argType string:	string

	arg repl:	string to replace matches of regexp

	argType repl:	string

	arg count:	how many first replaces to do. 0 by default, which means
to do all replacements

	argType count:	integer

	returnType:	string

yaql> regex("a.").replace("abcadc", "xx")
"xxcxxc"
yaql> regex("a.").replace("abcadc", "xx", count => 1)
"xxcadc"

	Returns the string obtained by replacing the leftmost non-overlapping
matches of regexp in string by the replacement repl, where the latter is
only string-type.

	signature:	string.replace(regexp, repl, count => 0)

	callAs:	method

	receiverArg string:

		string to make replace in

	argType string:	string

	arg regexp:	regex pattern

	argType regexp:	regex object

	arg repl:	string to replace matches of regexp

	argType repl:	string

	arg count:	how many first replaces to do. 0 by default, which means
to do all replacements

	argType count:	integer

	returnType:	string

yaql> "abcadc".replace(regex("a."), "xx")
"xxcxxc"

replaceBy

	Returns the string obtained by replacing the leftmost non-overlapping
matches of regexp in string by repl, where the latter is an expression to
get replacements by obtained matches.

	signature:	regexp.replaceBy(string, repl, count => 0)

	callAs:	method

	receiverArg regexp:

		regex pattern

	argType regexp:	regex object

	arg string:	string to make replace in

	argType string:	string

	arg repl:	lambda function which returns string to make replacements
according to input matches

	argType repl:	lambda

	arg count:	how many first replaces to do. 0 by default, which means
to do all replacements

	argType count:	integer

	returnType:	string

yaql> regex("a.c").replaceBy("abcadc", switch($.value = "abc" => xx,
 $.value = "adc" => yy))
"xxyy"

	Replaces matches of regexp in string with values provided by the
supplied function.

	signature:	string.replaceBy(regexp, repl, count => 0)

	callAs:	method

	receiverArg string:

		string to make replace in

	argType string:	string

	arg regexp:	regex pattern

	argType regexp:	regex object

	arg repl:	lambda function which returns string to make replacements
according to input matches

	argType repl:	lambda

	arg count:	how many first replaces to do. 0 by default, which means
to do all replacements

	argType count:	integer

	returnType:	string

yaql> "abcadc".replaceBy(regex("a.c"), switch($.value = "abc" => xx,
 $.value = "adc" => yy))
"xxyy"

search

Search substring which matches regexp. Returns selector applied to
dictionary {“start” => ..., “end” => ..., “value” => ...} where appropriate
values describe start of substring, its end and itself. By default, if no
selector is specified, returns only substring.
null is a return value if there is no substring which matches regexp.

	signature:	regexp.search(string, selector => null)

	callAs:	method

	receiverArg regexp:

		regex pattern

	argType regexp:	regex object

	arg string:	string to find match in

	argType string:	string

	arg selector:	lambda function to be applied to resulted dictionary with
keys ‘start’, ‘end’, ‘value’. null by default, which means to return
only substring.

	argType selector:

		lambda

	returnType:	string or selector return type

yaql> regex("a.c").search("abcabc")
"abc"
yaql> regex("a.c").search("cabc", $)
{
 "start": 1,
 "end": 4,
 "value": "abc"
}
yaql> regex("a.c").search("cabc", $.start)
1

searchAll

Search all substrings which matches regexp. Returns list of applied to
dictionary {“start” => ..., “end” => ..., “value” => ...} selector, where
appropriate values describe start of every substring, its end and itself.
By default, if no selector is specified, returns only list of substrings.

	signature:	regexp.searchAll(string, selector => null)

	callAs:	method

	receiverArg regexp:

		regex pattern

	argType regexp:	regex object

	arg string:	string to find match in

	argType string:	string

	arg selector:	lambda function to be applied to resulted dictionary of
every substring with keys ‘start’, ‘end’, ‘value’. null by default,
which means to return only list of substrings.

	argType selector:

		lambda

	returnType:	list

yaql> regex("a.c").searchAll("abcadc")
["abc", "adc"]
yaql> regex("a.c").searchAll("abcadc", $)
[
 {
 "start": 0,
 "end": 3,
 "value": "abc"
 },
 {
 "start": 3,
 "end": 6,
 "value": "adc"
 }
]

	name:	searchAll

split

	Splits string by regexp matches and returns list of strings.

	signature:	regexp.split(string, maxSplit => 0)

	callAs:	method

	receiverArg regexp:

		regex pattern

	argType regexp:	regex object

	arg string:	string to be splitted

	argType string:	string

	arg maxSplit:	how many first splits to do. 0 by default, which means
to split by all matches

	argType maxSplit:

		integer

	returnType:	list

yaql> regex("a.").split("abcadc")
["", "c", "c"]
yaql> regex("a.").split("abcadc", maxSplit => 1)
["", "cadc"]

	Splits string by regexp matches and returns list of strings.

	signature:	string.split(regexp, maxSplit => 0)

	callAs:	method

	receiverArg string:

		string to be splitted

	argType string:	string

	arg regexp:	regex pattern

	argType regexp:	regex object

	arg maxSplit:	how many first splits to do. 0 by default, which means
to split by all matches

	argType maxSplit:

		integer

	returnType:	list

yaql> "abcadc".split(regex("a."))
["", "c", "c"]
yaql> "abcadc".split(regex("a."), maxSplit => 1)
["", "cadc"]

DateTime functions

The module describes which operations can be done with datetime objects.

datetime

	Returns datetime object built on year, month, day, hour, minute, second,
microsecond, offset.

	signature:	datetime(year, month, day, hour => 0, minute => 0, second => 0,
microsecond => 0, offset => timespan(0))

	callAs:	function

	arg year:	number of years in datetime

	argType year:	integer between 1 and 9999 inclusive

	arg month:	number of months in datetime

	argType month:	integer between 1 and 12 inclusive

	arg day:	number of days in datetime

	argType day:	integer between 1 and number of days in given month

	arg hour:	number of hours in datetime, 0 by default

	argType hour:	integer between 0 and 23 inclusive

	arg minute:	number of minutes in datetime, 0 by default

	argType minute:	integer between 0 and 59 inclusive

	arg second:	number of seconds in datetime, 0 by default

	argType second:	integer between 0 and 59 inclusive

	arg microsecond:

		number of microseconds in datetime, 0 by default

	argType microsecond:

		integer between 0 and 1000000-1

	arg offset:	datetime offset in microsecond resolution, needed for tzinfo,
timespan(0) by default

	argType offset:	timespan type

	returnType:	datetime object

yaql> let(datetime(2015, 9, 29)) -> [$.year, $.month, $.day]
[2015, 9, 29]

	Returns datetime object built by string parsed with format.

	signature:	datetime(string, format => null)

	callAs:	function

	arg string:	string representing datetime

	argType string:	string

	arg format:	format for parsing input string which should be supported
with C99 standard of format codes. null by default, which means
parsing with Python dateutil.parser usage

	argType format:	string

	returnType:	datetime object

yaql> let(datetime("29.8?2015")) -> [$.year, $.month, $.day]
[2015, 8, 29]
yaql> let(datetime("29.8?2015", "%d.%m?%Y"))->[$.year, $.month, $.day]
[2015, 8, 29]

	Returns datetime object built by timestamp.

	signature:	datetime(timestamp, offset => timespan(0))

	callAs:	function

	arg timestamp:	timespan object to represent datetime

	argType timestamp:

		number

	arg offset:	datetime offset in microsecond resolution, needed for tzinfo,
timespan(0) by default

	argType offset:	timespan type

	returnType:	datetime object

yaql> let(datetime(1256953732)) -> [$.year, $.month, $.day]
[2009, 10, 31]

format

Returns a string representing datetime, controlled by a format string.

	signature:	dt.format(format)

	callAs:	method

	receiverArg dt:	input datetime object

	argType dt:	datetime object

	arg format:	format string

	argType format:	string

	returnType:	string

yaql> now().format("%A, %d. %B %Y %I:%M%p")
"Tuesday, 19. July 2016 08:49AM"

isDatetime

Returns true if value is datetime object, false otherwise.

	signature:	isDatetime(value)

	callAs:	function

	arg value:	input value

	argType value:	any

	returnType:	boolean

yaql> isDatetime(now())
true
yaql> isDatetime(datetime(2010, 10, 10))
true

isTimespan

Returns true if value is timespan object, false otherwise.

	signature:	isTimespan(value)

	callAs:	function

	arg value:	input value

	argType value:	any

	returnType:	boolean

yaql> isTimespan(now())
false
yaql> isTimespan(timespan())
true

localtz

Returns local time zone in timespan object.

	signature:	localtz()

	callAs:	function

	returnType:	timespan object

yaql> localtz().hours
3.0

now

Returns the current local date and time.

	signature:	now(offset => timespan(0))

	callAs:	function

	arg offset:	datetime offset in microsecond resolution, needed for tzinfo,
timespan(0) by default

	argType offset:	timespan type

	returnType:	datetime

yaql> let(now()) -> [$.year, $.month, $.day]
[2016, 7, 18]
yaql> now(offset=>localtz()).hour - now().hour
3

operator *

	Returns timespan object built on number multiplied by timespan.

	signature:	left * right

	callAs:	operator

	arg left:	number to multiply timespan

	argType left:	number

	arg right:	timespan object

	argType right:	timespan object

	returnType:	timespan

yaql> let(2 * timespan(hours => 24)) -> $.hours
48.0

	Returns timespan object built on timespan multiplied by number.

	signature:	left * right

	callAs:	operator

	arg left:	timespan object

	argType left:	timespan object

	arg right:	number to multiply timespan

	argType right:	number

	returnType:	timespan

yaql> let(timespan(hours => 24) * 2) -> $.hours
48.0

operator +

	Returns datetime object with added timespan.

	signature:	left + right

	callAs:	operator

	arg left:	input datetime object

	argType left:	datetime object

	arg right:	input timespan object

	argType right:	timespan object

	returnType:	datetime object

yaql> let(now() + timespan(days => 100)) -> $.month
10

	Returns datetime object with added timespan.

	signature:	left + right

	callAs:	operator

	arg left:	input timespan object

	argType left:	timespan object

	arg right:	input datetime object

	argType right:	datetime object

	returnType:	datetime object

yaql> let(timespan(days => 100) + now()) -> $.month
10

	Returns sum of two timespan objects.

	signature:	left + right

	callAs:	operator

	arg left:	input timespan object

	argType left:	timespan object

	arg right:	input timespan object

	argType right:	timespan object

	returnType:	timespan object

yaql> let(timespan(days => 1) + timespan(hours => 12)) -> $.hours
36.0

operator -

	Returns datetime object dt1 with subtracted dt2.

	signature:	left - right

	callAs:	operator

	arg left:	input datetime object

	argType left:	datetime object

	arg right:	datetime object to be subtracted

	argType right:	datetime object

	returnType:	timespan object

yaql> let(now() - now()) -> $.microseconds
-325

	Returns datetime object with subtracted timespan.

	signature:	left - right

	callAs:	operator

	arg left:	input datetime object

	argType left:	datetime object

	arg right:	input timespan object

	argType right:	timespan object

	returnType:	datetime object

yaql> let(now() - timespan(days => 100)) -> $.month
4

	Returns timespan object with subtracted another timespan object.

	signature:	left - right

	callAs:	operator

	arg left:	input timespan object

	argType left:	timespan object

	arg right:	input timespan object

	argType right:	timespan object

	returnType:	timespan object

yaql> let(timespan(days => 1) - timespan(hours => 12)) -> $.hours
12.0

operator /

	Returns timespan object divided by number.

	signature:	left / right

	callAs:	operator

	arg left:	left timespan object

	argType left:	timespan object

	arg right:	number to divide by

	argType right:	number

	returnType:	timespan object

yaql> let(timespan(hours => 24) / 2) -> $.hours
12.0

	Returns result of division of timespan microseconds by another timespan
microseconds.

	signature:	left / right

	callAs:	operator

	arg left:	left timespan object

	argType left:	timespan object

	arg right:	right timespan object

	argType right:	timespan object

	returnType:	float

yaql> timespan(hours => 24) / timespan(hours => 12)
2.0

operator <

	Returns true if left datetime is strictly less than right datetime,
false otherwise.

	signature:	left < right

	callAs:	operator

	arg left:	left datetime object

	argType left:	datetime object

	arg right:	right datetime object

	argType right:	datetime object

	returnType:	boolean

yaql> datetime(2011, 11, 11) < datetime(2011, 11, 11)
false

	Returns true if left timespan is strictly less than right timespan,
false otherwise.

	signature:	left < right

	callAs:	operator

	arg left:	left timespan object

	argType left:	timespan object

	arg right:	right timespan object

	argType right:	timespan object

	returnType:	boolean

yaql> timespan(hours => 23) < timespan(days => 1)
true

operator <=

	Returns true if left datetime is less or equal to right datetime,
false otherwise.

	signature:	left <= right

	callAs:	operator

	arg left:	left datetime object

	argType left:	datetime object

	arg right:	right datetime object

	argType right:	datetime object

	returnType:	boolean

yaql> datetime(2011, 11, 11) <= datetime(2011, 11, 11)
true

	Returns true if left timespan is less or equal to right timespan,
false otherwise.

	signature:	left <= right

	callAs:	operator

	arg left:	left timespan object

	argType left:	timespan object

	arg right:	right timespan object

	argType right:	timespan object

	returnType:	boolean

yaql> timespan(hours => 23) <= timespan(days => 1)
true

operator >

	Returns true if left datetime is strictly greater than right datetime,
false otherwise.

	signature:	left > right

	callAs:	operator

	arg left:	left datetime object

	argType left:	datetime object

	arg right:	right datetime object

	argType right:	datetime object

	returnType:	boolean

yaql> datetime(2011, 11, 11) > datetime(2010, 10, 10)
true

	Returns true if left timespan is strictly greater than right timespan,
false otherwise.

	signature:	left > right

	callAs:	operator

	arg left:	left timespan object

	argType left:	timespan object

	arg right:	right timespan object

	argType right:	timespan object

	returnType:	boolean

yaql> timespan(hours => 2) > timespan(hours => 1)
true

operator >=

	Returns true if left datetime is greater or equal to right datetime,
false otherwise.

	signature:	left >= right

	callAs:	operator

	arg left:	left datetime object

	argType left:	datetime object

	arg right:	right datetime object

	argType right:	datetime object

	returnType:	boolean

yaql> datetime(2011, 11, 11) >= datetime(2011, 11, 11)
true

	Returns true if left timespan is greater or equal to right timespan,
false otherwise.

	signature:	left >= right

	callAs:	operator

	arg left:	left timespan object

	argType left:	timespan object

	arg right:	right timespan object

	argType right:	timespan object

	returnType:	boolean

yaql> timespan(hours => 24) >= timespan(days => 1)
true

operator unary +

Returns timespan.

	signature:	+arg

	callAs:	operator

	arg arg:	input timespan object

	argType arg:	timespan object

	returnType:	timespan object

yaql> let(+timespan(hours => -24)) -> $.hours
-24.0

operator unary -

Returns negative timespan.

	signature:	-arg

	callAs:	operator

	arg arg:	input timespan object

	argType arg:	timespan object

	returnType:	timespan object

yaql> let(-timespan(hours => 24)) -> $.hours
-24.0

replace

Returns datetime object with applied replacements.

	signature:	dt.replace(year => null, month => null, day => null,
hour => null, minute => null, second => null,
microsecond => null, offset => null)

	callAs:	method

	receiverArg dt:	input datetime object

	argType dt:	datetime object

	arg year:	number of years to replace, null by default which means
no replacement

	argType year:	integer between 1 and 9999 inclusive

	arg month:	number of months to replace, null by default which means
no replacement

	argType month:	integer between 1 and 12 inclusive

	arg day:	number of days to replace, null by default which means
no replacement

	argType day:	integer between 1 and number of days in given month

	arg hour:	number of hours to replace, null by default which means
no replacement

	argType hour:	integer between 0 and 23 inclusive

	arg minute:	number of minutes to replace, null by default which means
no replacement

	argType minute:	integer between 0 and 59 inclusive

	arg second:	number of seconds to replace, null by default which means
no replacement

	argType second:	integer between 0 and 59 inclusive

	arg microsecond:

		number of microseconds to replace, null by default
which means no replacement

	argType microsecond:

		integer between 0 and 1000000-1

	arg offset:	datetime offset in microsecond resolution to replace, null
by default which means no replacement

	argType offset:	timespan type

	returnType:	datetime object

yaql> datetime(2015, 9, 29).replace(year => 2014).year
2014

timespan

Returns timespan object with specified args.

	signature:	timespan(days => 0, hours => 0, minutes => 0, seconds => 0,
milliseconds => 0, microseconds => 0)

	callAs:	function

	arg days:	number of days in timespan, 0 by default

	argType days:	integer

	arg hours:	number of hours in timespan, 0 by default

	argType hours:	integer

	arg minutes:	number of minutes in timespan, 0 by default

	argType minutes:

		integer

	arg seconds:	number of seconds in timespan, 0 by default

	argType seconds:

		integer

	arg milliseconds:

		number of microseconds in timespan, 0 by default

	argType milliseconds:

		integer

	arg microsecond:

		number of microseconds in timespan, 0 by default

	argType microsecond:

		integer

	returnType:	timespan object

yaql> timespan(days => 1, hours => 2, minutes => 3).hours
26.05

utctz

Returns UTC time zone in timespan object.

	signature:	utctz()

	callAs:	function

	returnType:	timespan object

yaql> utctz().hours
0.0

Intrinsic functions

The module describes main system functions for working with objects.

assert

Evaluates condition against object. If it evaluates to true returns the
object, otherwise throws an exception with provided message.

	signature:	obj.assert(condition, message => “Assertion failed”)

	callAs:	method

	arg obj:	object to evaluate condition on

	argType obj:	any

	arg condition:	lambda function to be evaluated on obj. If result of
function evaluates to false then trows exception message

	argType condition:

		lambda

	arg message:	message to trow if condition returns false

	argType message:

		string

	returnType:	obj type or message

yaql> 12.assert($ < 2)
Execution exception: Assertion failed
yaql> 12.assert($ < 20)
12
yaql> [].assert($, "Failed assertion")
Execution exception: Failed assertion

call

	Evaluates function with specified args and kwargs and returns the
result.
This function is used to transform expressions like ‘$foo(args, kwargs)’
to ‘#call($foo, args, kwargs)’.
Note that to use this functionality ‘delegate’ mode has to be enabled.

	signature:	call(callable, args, kwargs)

	callAs:	function

	arg callable:	callable function

	argType callable:

		python type

	arg args:	sequence of items to be used for calling

	argType args:	sequence

	arg kwargs:	dictionary with kwargs to be used for calling

	argType kwargs:	mapping

	returnType:	any (callable return type)

	Evaluates function name with specified args and kwargs and returns the
result.

	signature:	call(name, args, kwargs)

	callAs:	function

	arg name:	name of callable

	argType name:	string

	arg args:	sequence of items to be used for calling

	argType args:	sequence

	arg kwargs:	dictionary with kwargs to be used for calling

	argType kwargs:	mapping

	returnType:	any (callable return type)

yaql> call(let, [1, 2], {a => 3, b => 4}) -> $1 + $a + $2 + $b
10

def

Returns new context object with function name defined.

	signature:	def(name, func)

	callAs:	function

	arg name:	name of function

	argType name:	string

	arg func:	function to be stored under provided name

	argType func:	lambda

	returnType:	context object

yaql> def(sq, $*$) -> [1, 2, 3].select(sq($))
[1, 4, 9]

getContextData

Returns the context value by its name. This function is system
and can be overridden to change the way of getting context data.

	signature:	getContextData(name)

	callAs:	function

	arg name:	value’s key name

	argType name:	string

	returnType:	any (value type)

lambda

Constructs a new anonymous function
Note that to use this function ‘delegate’ mode has to be enabled.

	signature:	lambda(func)

	callAs:	function

	arg func:	function to be returned

	argType func:	lambda

	returnType:	obj type or message

yaql> let(func => lambda(2 * $)) -> [1, 2, 3].select($func($))
[2, 4, 6]
yaql> [1, 2, 3, 4].where(lambda($ > 3)($ + 1))
[3, 4]

let

Returns context object where args are stored with 1-based indexes
and kwargs values are stored with appropriate keys.

	signature:	let([args], {kwargs})

	callAs:	function

	arg [args]:	values to be stored under appropriate numbers $1, $2, ...

	argType [args]:	chain of any values

	arg {kwargs}:	values to be stored under appropriate keys

	argType {kwargs}:

		chain of mappings

	returnType:	context object

yaql> let(1, 2, a => 3, b => 4) -> $1 + $a + $2 + $b
10

operator ->

Evaluates lambda on provided context and returns the result.

	signature:	left -> right

	callAs:	operator

	arg left:	context to be used for function

	argType left:	context object

	arg right:	function

	argType right:	lambda

	returnType:	any (function return value type)

yaql> let(a => 1) -> $a
1

operator .

	Returns value of ‘name’ property.

	signature:	left.right

	callAs:	operator

	arg left:	object

	argType left:	any

	arg right:	object property name

	argType right:	keyword

	returnType:	any

yaql> now().year
2016

	Returns expr evaluated on receiver.

	signature:	receiver.expr

	callAs:	operator

	arg receiver:	object to evaluate expression

	argType receiver:

		any

	arg expr:	expression

	argType expr:	expression that can be evaluated as a method

	returnType:	expression result type

yaql> [0, 1].select($+1)
[1, 2]

operator ?.

Evaluates expr on receiver if receiver isn’t null and returns the result.
If receiver is null returns null.

	signature:	receiver?.expr

	callAs:	operator

	arg receiver:	object to evaluate expression

	argType receiver:

		any

	arg expr:	expression

	argType expr:	expression that can be evaluated as a method

	returnType:	expression result or null

yaql> [0, 1]?.select($+1)
[1, 2]
yaql> null?.select($+1)
null

unpack

Returns context object with sequence values unpacked to args.
If args size is equal to sequence size then args get appropriate
sequence values.
If args size is 0 then args are 1-based indexes.
Otherwise ValueError is raised.

	signature:	sequence.unpack([args])

	callAs:	method

	receiverArg sequence:

		iterable of items to be passed as context values

	argType sequence:

		iterable

	arg [args]:	keys to be associated with sequence items. If args size is
equal to sequence size then args get appropriate sequence items. If
args size is 0 then args are indexed start from 1. Otherwise exception
will be thrown

	argType [args]:	chain of strings

	returnType:	context object

yaql> [1, 2].unpack(a, b) -> $a + $b
3
yaql> [2, 3].unpack() -> $1 + $2
5

with

Returns new context object where args are stored with 1-based indexes.

	signature:	with([args])

	callAs:	function

	arg [args]:	values to be stored under appropriate numbers $1, $2, ...

	argType [args]:	chain of any values

	returnType:	context object

yaql> with("ab", "cd") -> $1 + $2
"abcd"

YAQL`ization of Python classes

Any Python class or object can be yaqlized. It is possible to call methods,
access attributes/properties and index of yaqlized objects.

The first way to yaqlize object is using function call:

class A(object):
 foo = 256
 def bar(self):
 print('yaqlization works with methods too')

sample_object = A()
yaqlization.yaqlize(sample_object)

The second way is using decorator:

@yaqlization.yaqlize
class A(object):
 foo = 256
 def bar(self):
 print('yaqlization works with methods too')

Any mentioned operation on yaqlized objects can be disabled with additional
parameters for yaqlization. Also it is possible to specify whitelist/blacklist
of methods/attributes/keys that are exposed to the yaql.

This module provides implemented operators on Yaqlized objects.

operator .

	Returns attribute of the object.

	signature:	obj.attr

	callAs:	operator

	arg obj:	yaqlized object

	argType obj:	yaqlized object, initialized with
yaqlize_attributes equal to True

	arg attr:	attribute name

	argType attr:	keyword

	returnType:	any

	Evaluates expression on receiver and returns its result.

	signature:	receiver.expr

	callAs:	operator

	arg receiver:	yaqlized receiver

	argType receiver:

		yaqlized object, initialized with
yaqlize_methods equal to True

	arg expr:	expression to be evaluated

	argType expr:	expression

	returnType:	any (expression return type)

operator indexer

Returns value of attribute/property key of the object.

	signature:	obj[key]

	callAs:	function

	arg obj:	yaqlized object

	argType obj:	yaqlized object, initialized with
yaqlize_indexer equal to True

	arg key:	index name

	argType key:	keyword

	returnType:	any

Legacy YAQL compatibility functions

The module describes functions which are available with backward compatibility
mode with YAQL v0.2.
Examples are provided with CLI started with legacy mode.

as

Returns context object with mapping functions applied on receiver and
passed under corresponding keys.

	signature:	receiver.as([args])

	callAs:	method

	receiverArg receiver:

		value to be used for mappings lambdas evaluating

	argType receiver:

		any type

	arg [args]:	tuples with lambdas and appropriate keys to be passed to
context

	argType [args]:	chain of tuples

	returnType:	context object

yaql> [1, 2].as(len($) => a, sum($) => b) -> $a + $b
5

dict

Returns dict built from tuples.

	signature:	dict([args])

	callAs:	function or method

	arg [args]:	chain of tuples to be interpreted as (key, value) for dict

	argType [args]:	chain of tuples

	returnType:	dictionary

yaql> dict(a => 1, b => 2)
{"a": 1, "b": 2}
yaql> dict(tuple(a, 1), tuple(b, 2))
{"a": 1, "b": 2}

operator .

Returns dict’s key value.

	signature:	left.right

	callAs:	operator

	arg left:	input dictionary

	argType left:	mapping

	arg right:	key

	argType right:	keyword

	returnType:	any (appropriate value type)

yaql> {a => 2, b => 2}.a
2

operator =>

Returns tuple.

	signature:	left => right

	callAs:	operator

	arg left:	left value for tuple

	argType left:	any

	arg right:	right value for tuple

	argType right:	any

	returnType:	tuple

yaql> a => b
["a", "b"]
yaql> null => 1 => []
[null, 1, []]

range

Returns sequence from [start, stop).

	signature:	start.range(stop => null)

	callAs:	function or method

	receiverArg start:

		value to start from

	argType start:	integer

	arg stop:	value to end with. null by default, which means returning
iterator to sequence

	argType stop:	integer

	returnType:	sequence

yaql> 0.range(3)
[0, 1, 2]
yaql> 0.range().take(4)
[0, 1, 2, 3]

switch

Returns the value of the first key-value pair for which condition returned
true. If there is no such returns null.

	signature:	value.switch([args])

	callAs:	function or method

	receiverArg value:

		value to be used evaluating conditions

	argType value:	any type

	arg [args]:	conditions to be checked for the first true

	argType [args]:	chain of mappings

	returnType:	any (appropriate value type)

yaql> 15.switch($ < 3 => "a", $ < 7 => "b", $ => "c")
"c"

toList

Returns collection converted to list.

	signature:	collection.toList()

	callAs:	method

	receiverArg collection:

		collection to be converted

	argType collection:

		iterable

	returnType:	list

yaql> range(0, 3).toList()
[0, 1, 2]

tuple

Returns tuple of args.

	signature:	tuple([args])

	callAs:	function

	arg [args]:	chain of values for tuple

	argType [args]:	chain of any types

	returnType:	tuple

yaql> tuple(0, [], "a")
[0, [], "a"]

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	yaql documentation

Contributing

If you would like to contribute to the development of OpenStack,
you must follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

Once those steps have been completed, changes to OpenStack
should be submitted for review via the Gerrit tool, following
the workflow documented at:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/yaql

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	yaql documentation

Index

 Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		yaql documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, OpenStack Foundation.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

